RouterBench: A Benchmark for Multi-LLM Routing System
- URL: http://arxiv.org/abs/2403.12031v2
- Date: Thu, 28 Mar 2024 17:56:28 GMT
- Title: RouterBench: A Benchmark for Multi-LLM Routing System
- Authors: Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt Keutzer, Shriyash Kaustubh Upadhyay,
- Abstract summary: No single model can optimally address all tasks and applications, particularly when balancing performance with cost.
This limitation has led to the development of LLM routing systems, which combine the strengths of various models to overcome the constraints of individual LLMs.
We present RouterBench, a novel evaluation framework designed to systematically assess the efficacy of LLM routing systems.
- Score: 25.515453832224804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the range of applications for Large Language Models (LLMs) continues to grow, the demand for effective serving solutions becomes increasingly critical. Despite the versatility of LLMs, no single model can optimally address all tasks and applications, particularly when balancing performance with cost. This limitation has led to the development of LLM routing systems, which combine the strengths of various models to overcome the constraints of individual LLMs. Yet, the absence of a standardized benchmark for evaluating the performance of LLM routers hinders progress in this area. To bridge this gap, we present RouterBench, a novel evaluation framework designed to systematically assess the efficacy of LLM routing systems, along with a comprehensive dataset comprising over 405k inference outcomes from representative LLMs to support the development of routing strategies. We further propose a theoretical framework for LLM routing, and deliver a comparative analysis of various routing approaches through RouterBench, highlighting their potentials and limitations within our evaluation framework. This work not only formalizes and advances the development of LLM routing systems but also sets a standard for their assessment, paving the way for more accessible and economically viable LLM deployments. The code and data are available at https://github.com/withmartian/routerbench.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Universal Model Routing for Efficient LLM Inference [72.65083061619752]
We consider the problem of dynamic routing, where new, previously unobserved LLMs are available at test time.
We propose a new approach to this problem that relies on representing each LLM as a feature vector, derived based on predictions on a set of representative prompts.
We prove that these strategies are estimates of a theoretically optimal routing rule, and provide an excess risk bound to quantify their errors.
arXiv Detail & Related papers (2025-02-12T20:30:28Z) - LLM Bandit: Cost-Efficient LLM Generation via Preference-Conditioned Dynamic Routing [3.090041654375235]
We present a novel framework that formulates the LLM selection process as a multi-armed bandit problem.
Our approach incorporates a preference-conditioned dynamic routing mechanism, allowing users to specify their preferences at inference time.
Our method achieves significant improvements in both accuracy and cost-effectiveness across various LLM platforms.
arXiv Detail & Related papers (2025-02-04T22:09:43Z) - Revisiting SLO and Goodput Metrics in LLM Serving [17.777554083636716]
Service level objectives (SLOs) and goodput-the number of requests that meet SLOs per second-are introduced to evaluate the performance of LLM serving.
Existing metrics fail to capture the nature of user experience.
We propose a unified metric framework smooth goodput including SLOs and goodput to reflect the nature of user experience.
arXiv Detail & Related papers (2024-10-18T08:05:37Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.
Existing evaluations tend to rely solely on a final success rate.
We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency [20.33467627548677]
Large language models (LLMs) have surged in popularity and are extensively used in commercial applications.
We conduct a detailed analysis to identify major bottlenecks that impact end-to-end latency in LLM serving systems.
We then propose ScaleLLM, an optimized system for resource-efficient LLM serving.
arXiv Detail & Related papers (2024-07-23T23:37:29Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
We focus on solving one of the most important tasks in the field of speech processing, with speech foundation encoders and large language models (LLM)
Recent works have complex designs such as compressing the output temporally for the speech encoder, tackling modal alignment for the projector, and utilizing parameter-efficient fine-tuning for the LLM.
We found that delicate designs are not necessary, while an embarrassingly simple composition of off-the-shelf speech encoder, LLM, and the only trainable linear projector is competent for the ASR task.
arXiv Detail & Related papers (2024-02-13T23:25:04Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.