Revisiting SLO and Goodput Metrics in LLM Serving
- URL: http://arxiv.org/abs/2410.14257v1
- Date: Fri, 18 Oct 2024 08:05:37 GMT
- Title: Revisiting SLO and Goodput Metrics in LLM Serving
- Authors: Zhibin Wang, Shipeng Li, Yuhang Zhou, Xue Li, Rong Gu, Nguyen Cam-Tu, Chen Tian, Sheng Zhong,
- Abstract summary: Service level objectives (SLOs) and goodput-the number of requests that meet SLOs per second-are introduced to evaluate the performance of LLM serving.
Existing metrics fail to capture the nature of user experience.
We propose a unified metric framework smooth goodput including SLOs and goodput to reflect the nature of user experience.
- Score: 17.777554083636716
- License:
- Abstract: Large language models (LLMs) have achieved remarkable performance and are widely deployed in various applications, while the serving of LLM inference has raised concerns about user experience and serving throughput. Accordingly, service level objectives (SLOs) and goodput-the number of requests that meet SLOs per second-are introduced to evaluate the performance of LLM serving. However, existing metrics fail to capture the nature of user experience. We observe two ridiculous phenomena in existing metrics: 1) delaying token delivery can smooth the tail time between tokens (tail TBT) of a request and 2) dropping the request that fails to meet the SLOs midway can improve goodput. In this paper, we revisit SLO and goodput metrics in LLM serving and propose a unified metric framework smooth goodput including SLOs and goodput to reflect the nature of user experience in LLM serving. The framework can adapt to specific goals of different tasks by setting parameters. We re-evaluate the performance of different LLM serving systems under multiple workloads based on this unified framework and provide possible directions for future optimization of existing strategies. We hope that this framework can provide a unified standard for evaluating LLM serving and foster researches in the field of LLM serving optimization to move in a cohesive direction.
Related papers
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
A primary challenge in large language model (LLM) development is their onerous pre-training cost.
This paper explores a promising paradigm to improve LLM pre-training efficiency and quality by leveraging a small language model (SLM)
arXiv Detail & Related papers (2024-10-24T14:31:52Z) - Plug-and-Play Performance Estimation for LLM Services without Relying on Labeled Data [8.360964737763657]
Large Language Model (LLM) services exhibit impressive capability on unlearned tasks leveraging only a few examples by in-context learning (ICL)
This paper introduces a novel method to estimate the performance of LLM services across different tasks and contexts.
arXiv Detail & Related papers (2024-10-10T09:15:14Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.
Existing evaluations tend to rely solely on a final success rate.
We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency [20.33467627548677]
Large language models (LLMs) have surged in popularity and are extensively used in commercial applications.
We conduct a detailed analysis to identify major bottlenecks that impact end-to-end latency in LLM serving systems.
We then propose ScaleLLM, an optimized system for resource-efficient LLM serving.
arXiv Detail & Related papers (2024-07-23T23:37:29Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - RouterBench: A Benchmark for Multi-LLM Routing System [25.515453832224804]
No single model can optimally address all tasks and applications, particularly when balancing performance with cost.
This limitation has led to the development of LLM routing systems, which combine the strengths of various models to overcome the constraints of individual LLMs.
We present RouterBench, a novel evaluation framework designed to systematically assess the efficacy of LLM routing systems.
arXiv Detail & Related papers (2024-03-18T17:59:04Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.