論文の概要: Deep learning based detection of collateral circulation in coronary angiographies
- arxiv url: http://arxiv.org/abs/2403.12055v1
- Date: Mon, 8 Jan 2024 11:25:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 07:46:43.513937
- Title: Deep learning based detection of collateral circulation in coronary angiographies
- Title(参考訳): 深層学習による冠動脈造影における側方循環の検出
- Authors: Cosmin-Andrei Hatfaludi, Daniel Bunescu, Costin Florian Ciusdel, Alex Serban, Karl Bose, Marc Oppel, Stephanie Schroder, Christopher Seehase, Harald F. Langer, Jeanette Erdmann, Henry Nording, Lucian Mihai Itu,
- Abstract要約: 冠状動脈疾患 (CAD) は、世界中で死と入院の主な原因となっている。
血管造影画像中の冠側副循環(CCC)を検出するための新しい深層学習法を提案する。
本手法は,血管造影シークエンスの各フレームから特徴を抽出するために,畳み込みバックボーンに依存している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coronary artery disease (CAD) is the dominant cause of death and hospitalization across the globe. Atherosclerosis, an inflammatory condition that gradually narrows arteries and has potentially fatal effects, is the most frequent cause of CAD. Nonetheless, the circulation regularly adapts in the presence of atherosclerosis, through the formation of collateral arteries, resulting in significant long-term health benefits. Therefore, timely detection of coronary collateral circulation (CCC) is crucial for CAD personalized medicine. We propose a novel deep learning based method to detect CCC in angiographic images. Our method relies on a convolutional backbone to extract spatial features from each frame of an angiography sequence. The features are then concatenated, and subsequently processed by another convolutional layer that processes embeddings temporally. Due to scarcity of data, we also experiment with pretraining the backbone on coronary artery segmentation, which improves the results consistently. Moreover, we experiment with few-shot learning to further improve performance, given our low data regime. We present our results together with subgroup analyses based on Rentrop grading, collateral flow, and collateral grading, which provide valuable insights into model performance. Overall, the proposed method shows promising results in detecting CCC, and can be further extended to perform landmark based CCC detection and CCC quantification.
- Abstract(参考訳): 冠状動脈疾患 (CAD) は、世界中で死と入院の主な原因となっている。
動脈硬化症(Atherosclerosis)は、動脈を徐々に狭め、致命的な効果を持つ炎症性疾患であり、CADの最も多い原因である。
それにもかかわらず、循環は側副腎の形成を通じて動脈硬化の存在に定期的に適応し、長期的健康上の利益をもたらす。
そのため、CADパーソナライズド医療において、冠側副循環(CCC)のタイムリーな検出が重要である。
血管造影画像中のCCCを検出するための新しい深層学習手法を提案する。
本手法は,血管造影シークエンスの各フレームから空間的特徴を抽出するために,畳み込みバックボーンに依存している。
それらの特徴は結合され、その後別の畳み込み層によって処理され、時間的に埋め込みを処理する。
データ不足のため,冠状動脈セグメンテーションにおけるバックボーンの事前トレーニングも行った。
さらに、低いデータ構造を考えると、パフォーマンスをさらに向上するために、数ショットの学習を試みます。
本稿では,Rentrop grading, collateral flow, and collateral gradingに基づくサブグループ解析と合わせて,モデル性能に関する貴重な知見を提供する。
提案手法は,CCC検出において有望な結果を示し,ランドマークに基づくCCC検出とCCC定量化を行うためにさらに拡張することができる。
関連論文リスト
- Enhancing Coronary Artery Calcium Scoring via Multi-Organ Segmentation on Non-Contrast Cardiac Computed Tomography [2.072323367088703]
本論文は,医療用人工知能において依然として大幅な改善が可能であることを論じる。
病理診断から解剖学の深い理解へと焦点を移すことで,本論文で提案する新しいアルゴリズムは高い精度を実現する。
論文 参考訳(メタデータ) (2025-01-20T11:56:40Z) - AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
CCTA画像を用いた冠動脈セグメンテーションのための注意誘導型3Dディープネットワーク(AGFA-Net)を提案する。
AGFA-Netは注意機構と機能改善モジュールを活用して、有能な特徴を捉え、セグメンテーションの精度を高める。
1000個のCCTAスキャンからなるデータセットの評価はAGFA-Netの優れた性能を示し、平均Dice係数は86.74%、ハウスドルフ距離は0.23mmである。
論文 参考訳(メタデータ) (2024-06-13T01:04:47Z) - Coronary artery segmentation in non-contrast calcium scoring CT images
using deep learning [2.2687766762329886]
非コントラスト心エコー画像における冠状動脈のセグメンテーションのためのディープラーニングアルゴリズムを提案する。
テストGTを作成するために,手動メッシュ画像登録のための新しい手法を提案する。
実験結果から,トレーニングに使用するGTよりもトレーニングモデルの精度が有意に高く,相互変動に近いDiceとclDiceの測定値が得られた。
論文 参考訳(メタデータ) (2024-03-04T23:40:02Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
冠状動脈構造の複雑さとX線像の固有ノイズが相まって,この課題には大きな課題が生じる。
心血管狭窄セグメンテーションに対する半監督的アプローチを提案する。
自動冠状動脈疾患診断では異常な成績を示した。
論文 参考訳(メタデータ) (2023-11-17T02:01:19Z) - Automated Assessment of Critical View of Safety in Laparoscopic
Cholecystectomy [51.240181118593114]
胆嚢摘出術(胆嚢摘出術)は米国で最も一般的な手術の一つで、年間1.2万回以上の手術が施行されている。
LCは胆管損傷(BDI)の増加と関連しており、致死率と死亡率が高い。
本稿では,LCにおける安全性評価(CVS)の自動化を目的とした深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-09-13T22:01:36Z) - Reconstructing the somatotopic organization of the corticospinal tract
remains a challenge for modern tractography methods [55.07297021627281]
CST(Corticospinal tract)は、人間の脳において、身体の自発的な動きを制御できる重要なホワイトマター線維である。
拡散MRIトラクトグラフィーは、ヒトの健康におけるCST経路の解剖学的および変動性の研究を可能にする唯一の方法である。
論文 参考訳(メタデータ) (2023-06-09T02:05:40Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease [4.233200689119682]
冠状動脈閉塞(狭窄)の評価は、現在、医師による冠動脈造影ビデオシーケンスの視覚的評価によって行われている。
深層学習に基づく自動解析パイプラインを報告し,冠動脈血管造影を迅速かつ客観的に評価する。
我々は、ResNetやU-Netといった強力なディープラーニングアプローチと、従来の画像処理と幾何解析を組み合わせた。
論文 参考訳(メタデータ) (2021-01-29T10:23:49Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。