Process mining for self-regulated learning assessment in e-learning
- URL: http://arxiv.org/abs/2403.12068v1
- Date: Sun, 11 Feb 2024 11:51:32 GMT
- Title: Process mining for self-regulated learning assessment in e-learning
- Authors: R. Cerezo, A. Bogarin, M. Esteban, C. Romero,
- Abstract summary: We use Process Mining Techniques to examine students' acquisition of core skills such as self-regulated learning.
We applied a new algorithm in the educational domain called Inductive Miner over the interaction traces from 101 university students in a course given over one semester on the Moodle 2.0 platform.
We can conclude that students who passed did not follow the instructors' suggestions exactly, but they did follow the logic of a successful self-regulated learning process as opposed to their failing classmates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Content assessment has broadly improved in e-learning scenarios in recent decades. However, the eLearning process can give rise to a spatial and temporal gap that poses interesting challenges for assessment of not only content, but also students' acquisition of core skills such as self-regulated learning. Our objective was to discover students' self-regulated learning processes during an eLearning course by using Process Mining Techniques. We applied a new algorithm in the educational domain called Inductive Miner over the interaction traces from 101 university students in a course given over one semester on the Moodle 2.0 platform. Data was extracted from the platform's event logs with 21629 traces in order to discover students' self-regulation models that contribute to improving the instructional process. The Inductive Miner algorithm discovered optimal models in terms of fitness for both Pass and Fail students in this dataset, as well as models at a certain level of granularity that can be interpreted in educational terms, which are the most important achievement in model discovery. We can conclude that although students who passed did not follow the instructors' suggestions exactly, they did follow the logic of a successful self-regulated learning process as opposed to their failing classmates. The Process Mining models also allow us to examine which specific actions the students performed, and it was particularly interesting to see a high presence of actions related to forum-supported collaborative learning in the Pass group and an absence of those in the Fail group.
Related papers
- Machine Unlearning in Contrastive Learning [3.6218162133579694]
We introduce a novel gradient constraint-based approach for training the model to effectively achieve machine unlearning.
Our approach demonstrates proficient performance not only on contrastive learning models but also on supervised learning models.
arXiv Detail & Related papers (2024-05-12T16:09:01Z) - A General Model for Detecting Learner Engagement: Implementation and Evaluation [0.0]
This paper proposes a general, lightweight model for selecting and processing features to detect learners' engagement levels.
We analyzed the videos from the publicly available DAiSEE dataset to capture the dynamic essence of learner engagement.
The suggested model achieves an accuracy of 68.57% in a specific implementation and outperforms the studied state-of-the-art models detecting learners' engagement levels.
arXiv Detail & Related papers (2024-05-07T12:11:15Z) - An Effective Learning Management System for Revealing Student Performance Attributes [22.88480788156872]
This study proposes an LMS incorporated with an advanced educational mining module to mine efficiently from student performance records.
Results show increased mining efficiency of the proposed mining module without information loss compared to classic educational mining algorithms.
The design and application of such an effective LMS can enable educators to learn from past student performance experiences, empowering them to guide and intervene with students in time, and eventually improve their academic success.
arXiv Detail & Related papers (2024-03-05T03:56:49Z) - Knowledge Distillation for Road Detection based on cross-model Semi-Supervised Learning [17.690698736544626]
We propose an integrated approach that combines knowledge distillation and semi-supervised learning methods.
This hybrid approach leverages the robust capabilities of large models to effectively utilise large unlabelled data.
The proposed semi-supervised learning-based knowledge distillation (SSLKD) approach demonstrates a notable improvement in the performance of the student model.
arXiv Detail & Related papers (2024-02-07T22:50:47Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
We introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks.
Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth.
Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks.
arXiv Detail & Related papers (2022-11-15T18:57:46Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - Predicting student performance using sequence classification with
time-based windows [1.5836913530330787]
We show that accurate predictive models can be built based on sequential patterns derived from students' behavioral data.
We present a methodology for capturing temporal aspects in behavioral data and analyze its influence on the predictive performance of the models.
The results of our improved sequence classification technique are capable of predicting student performance with high levels of accuracy, reaching 90 percent for course-specific models.
arXiv Detail & Related papers (2022-08-16T13:46:39Z) - Process-BERT: A Framework for Representation Learning on Educational
Process Data [68.8204255655161]
We propose a framework for learning representations of educational process data.
Our framework consists of a pre-training step that uses BERT-type objectives to learn representations from sequential process data.
We apply our framework to the 2019 nation's report card data mining competition dataset.
arXiv Detail & Related papers (2022-04-28T16:07:28Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
We aim to provide a principled, unifying framework by revisiting and strengthening the connection between meta-learning and traditional supervised learning.
By treating pairs of task-specific data sets and target models as (feature, label) samples, we can reduce many meta-learning algorithms to instances of supervised learning.
This view not only unifies meta-learning into an intuitive and practical framework but also allows us to transfer insights from supervised learning directly to improve meta-learning.
arXiv Detail & Related papers (2020-02-03T06:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.