Knowledge Distillation for Road Detection based on cross-model Semi-Supervised Learning
- URL: http://arxiv.org/abs/2402.05305v2
- Date: Mon, 25 Mar 2024 11:48:27 GMT
- Title: Knowledge Distillation for Road Detection based on cross-model Semi-Supervised Learning
- Authors: Wanli Ma, Oktay Karakus, Paul L. Rosin,
- Abstract summary: We propose an integrated approach that combines knowledge distillation and semi-supervised learning methods.
This hybrid approach leverages the robust capabilities of large models to effectively utilise large unlabelled data.
The proposed semi-supervised learning-based knowledge distillation (SSLKD) approach demonstrates a notable improvement in the performance of the student model.
- Score: 17.690698736544626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement of knowledge distillation has played a crucial role in enabling the transfer of knowledge from larger teacher models to smaller and more efficient student models, and is particularly beneficial for online and resource-constrained applications. The effectiveness of the student model heavily relies on the quality of the distilled knowledge received from the teacher. Given the accessibility of unlabelled remote sensing data, semi-supervised learning has become a prevalent strategy for enhancing model performance. However, relying solely on semi-supervised learning with smaller models may be insufficient due to their limited capacity for feature extraction. This limitation restricts their ability to exploit training data. To address this issue, we propose an integrated approach that combines knowledge distillation and semi-supervised learning methods. This hybrid approach leverages the robust capabilities of large models to effectively utilise large unlabelled data whilst subsequently providing the small student model with rich and informative features for enhancement. The proposed semi-supervised learning-based knowledge distillation (SSLKD) approach demonstrates a notable improvement in the performance of the student model, in the application of road segmentation, surpassing the effectiveness of traditional semi-supervised learning methods.
Related papers
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.
We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.
Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - Faithful Label-free Knowledge Distillation [8.572967695281054]
This paper presents a label-free knowledge distillation approach called Teacher in the Middle (TinTeM)
It produces a more faithful student, which better replicates the behavior of the teacher network across a range of benchmarks testing model robustness, generalisability and out-of-distribution detection.
arXiv Detail & Related papers (2024-11-22T01:48:44Z) - Machine Unlearning in Contrastive Learning [3.6218162133579694]
We introduce a novel gradient constraint-based approach for training the model to effectively achieve machine unlearning.
Our approach demonstrates proficient performance not only on contrastive learning models but also on supervised learning models.
arXiv Detail & Related papers (2024-05-12T16:09:01Z) - ReffAKD: Resource-efficient Autoencoder-based Knowledge Distillation [3.301728339780329]
We propose an innovative method to boost Knowledge Distillation efficiency without the need for resource-heavy teacher models.
In our work, we propose an efficient method for generating soft labels, thereby eliminating the need for a large teacher model.
Our experiments on various datasets, including CIFAR-100, Tiny Imagenet, and Fashion MNIST, demonstrate the superior resource efficiency of our approach.
arXiv Detail & Related papers (2024-04-15T15:54:30Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism.
We have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge.
arXiv Detail & Related papers (2024-03-27T05:10:38Z) - Knowledge Distillation via Token-level Relationship Graph [12.356770685214498]
We propose a novel method called Knowledge Distillation with Token-level Relationship Graph (TRG)
By employing TRG, the student model can effectively emulate higher-level semantic information from the teacher model.
We conduct experiments to evaluate the effectiveness of the proposed method against several state-of-the-art approaches.
arXiv Detail & Related papers (2023-06-20T08:16:37Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - A Closer Look at Knowledge Distillation with Features, Logits, and
Gradients [81.39206923719455]
Knowledge distillation (KD) is a substantial strategy for transferring learned knowledge from one neural network model to another.
This work provides a new perspective to motivate a set of knowledge distillation strategies by approximating the classical KL-divergence criteria with different knowledge sources.
Our analysis indicates that logits are generally a more efficient knowledge source and suggests that having sufficient feature dimensions is crucial for the model design.
arXiv Detail & Related papers (2022-03-18T21:26:55Z) - Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models [0.0]
Self-Feature Regularization(SFR) is proposed, which uses features in the deep layers to supervise feature learning in the shallow layers.
We firstly use generalization-l2 loss to match local features and a many-to-one approach to distill more intensively in the channel dimension.
arXiv Detail & Related papers (2021-03-12T15:29:00Z) - Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation [55.34995029082051]
We propose a method to learn to augment for data-scarce domain BERT knowledge distillation.
We show that the proposed method significantly outperforms state-of-the-art baselines on four different tasks.
arXiv Detail & Related papers (2021-01-20T13:07:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.