Deep learning automates Cobb angle measurement compared with multi-expert observers
- URL: http://arxiv.org/abs/2403.12115v1
- Date: Mon, 18 Mar 2024 15:43:45 GMT
- Title: Deep learning automates Cobb angle measurement compared with multi-expert observers
- Authors: Keyu Li, Hanxue Gu, Roy Colglazier, Robert Lark, Elizabeth Hubbard, Robert French, Denise Smith, Jikai Zhang, Erin McCrum, Anthony Catanzano, Joseph Cao, Leah Waldman, Maciej A. Mazurowski, Benjamin Alman,
- Abstract summary: The Cobb angle is a widely used scoliosis quantification method that measures the degree of curvature between the tilted vertebrae.
We have created fully automated software that precisely measures the Cobb angle and provides clear visualizations of these measurements.
This software integrates deep neural network-based spine region detection and segmentation, spine centerline identification, pinpointing the most significantly tilted vertebrae.
- Score: 3.7153471185088427
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Scoliosis, a prevalent condition characterized by abnormal spinal curvature leading to deformity, requires precise assessment methods for effective diagnosis and management. The Cobb angle is a widely used scoliosis quantification method that measures the degree of curvature between the tilted vertebrae. Yet, manual measuring of Cobb angles is time-consuming and labor-intensive, fraught with significant interobserver and intraobserver variability. To address these challenges and the lack of interpretability found in certain existing automated methods, we have created fully automated software that not only precisely measures the Cobb angle but also provides clear visualizations of these measurements. This software integrates deep neural network-based spine region detection and segmentation, spine centerline identification, pinpointing the most significantly tilted vertebrae, and direct visualization of Cobb angles on the original images. Upon comparison with the assessments of 7 expert readers, our algorithm exhibited a mean deviation in Cobb angle measurements of 4.17 degrees, notably surpassing the manual approach's average intra-reader discrepancy of 5.16 degrees. The algorithm also achieved intra-class correlation coefficients (ICC) exceeding 0.96 and Pearson correlation coefficients above 0.944, reflecting robust agreement with expert assessments and superior measurement reliability. Through the comprehensive reader study and statistical analysis, we believe this algorithm not only ensures a higher consensus with expert readers but also enhances interpretability and reproducibility during assessments. It holds significant promise for clinical application, potentially aiding physicians in more accurate scoliosis assessment and diagnosis, thereby improving patient care.
Related papers
- MMA-Net: Multiple Morphology-Aware Network for Automated Cobb Angle
Measurement [6.8243631770391735]
We introduce a novel framework that improves Cobb angle measurement accuracy by integrating multiple spine morphology as attention information.
We evaluate our method on the AASCE challenge dataset and achieve superior performance with the SMAPE of 7.28% and the MAE of 3.18deg.
arXiv Detail & Related papers (2023-09-25T01:56:53Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Development of Machine learning algorithms to identify the Cobb angle in
adolescents with idiopathic scoliosis based on lumbosacral joint efforts
during gait (Case study) [1.1199585259018454]
The aim of this study is to identify the Cobb angle by developing an automated radiation-free model.
The lumbosacral joint efforts during gait as radiation-free data are capable to identify the Cobb angle.
arXiv Detail & Related papers (2023-01-29T23:58:16Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Automating Cobb Angle Measurement for Adolescent Idiopathic Scoliosis
using Instance Segmentation [1.3161405778899375]
Currently, the reference standard for assessing scoliosis is based on the manual assignment of Cobb angles.
This paper proposes to address the Cobb angle measurement task using YOLACT, an instance segmentation model.
The proposed method first segments the vertebrae in an X-Ray image using YOLACT, then it tracks the important landmarks using the minimum bounding box approach.
arXiv Detail & Related papers (2022-11-25T14:04:06Z) - Quality control for more reliable integration of deep learning-based
image segmentation into medical workflows [0.23609258021376836]
We present an analysis of state-of-the-art automatic quality control (QC) approaches to estimate the certainty of their outputs.
We validated the most promising approaches on a brain image segmentation task identifying white matter hyperintensities (WMH) in magnetic resonance imaging data.
arXiv Detail & Related papers (2021-12-06T16:30:43Z) - Direct Estimation of Spinal Cobb Angles by Structured Multi-Output
Regression [42.67503464183464]
The Cobb angle that quantitatively evaluates the spinal curvature plays an important role in the scoliosis diagnosis and treatment.
We formulate the estimation of the Cobb angles from spinal X-rays as a multi-output regression task.
Our method achieves the direct estimation of Cobb angles with high accuracy, which indicates its great potential in clinical use.
arXiv Detail & Related papers (2020-12-23T12:33:46Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z) - Vertebra-Focused Landmark Detection for Scoliosis Assessment [54.24477530836629]
We propose a novel vertebra-focused landmark detection method.
Our model first localizes the vertebra centers, based on which it then traces the four corner landmarks of the vertebra through the learned corner offset.
Results demonstrate the merits of our method in both Cobb angle measurement and landmark detection on low-contrast and ambiguous X-ray images.
arXiv Detail & Related papers (2020-01-09T19:17:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.