論文の概要: FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos
- arxiv url: http://arxiv.org/abs/2403.12198v1
- Date: Mon, 18 Mar 2024 19:13:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 18:21:58.022926
- Title: FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos
- Title(参考訳): FLex:ステレオ内視鏡映像のダイナミック・ラジアンス・フィールド最適化
- Authors: Florian Philipp Stilz, Mert Asim Karaoglu, Felix Tristram, Nassir Navab, Benjamin Busam, Alexander Ladikos,
- Abstract要約: 内視鏡的シーンの再構築は、外科手術後の分析から教育訓練まで、様々な医療応用にとって重要な要素である。
変形組織の非常にダイナミックな環境下での移動内視鏡の挑戦的なセットアップに着目する。
複数重重なり合う4次元ニューラルラジアンスフィールド(NeRF)への暗黙的なシーン分離と、再構成とカメラのスクラッチからのポーズを協調的に最適化するプログレッシブ最適化手法を提案する。
これにより、使いやすさが向上し、5000フレーム以上の手術ビデオの処理に間に合うように復元能力を拡張できる。
- 参考スコア(独自算出の注目度): 79.50191812646125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training. Neural rendering has recently shown promising results in endoscopic reconstruction with deforming tissue. However, the setup has been restricted to a static endoscope, limited deformation, or required an external tracking device to retrieve camera pose information of the endoscopic camera. With FLex we adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue. We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch. This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information. Extensive evaluations on the StereoMIS dataset show that FLex significantly improves the quality of novel view synthesis while maintaining competitive pose accuracy.
- Abstract(参考訳): 内視鏡的シーンの再構築は、外科手術後の分析から教育訓練まで、様々な医療応用にとって重要な要素である。
最近, 変形組織を用いた内視鏡的再建術で有望な成績を示した。
しかし、セットアップは、静的内視鏡、変形の制限、または内視鏡カメラのカメラポーズ情報を取得するための外部追跡装置に限られている。
FLexでは、変形組織の非常にダイナミックな環境において、動く内視鏡の挑戦的なセットアップを飾ります。
複数重重なり合う4次元ニューラルラジアンスフィールド(NeRF)への暗黙的なシーン分離と、再構成とカメラのスクラッチからのポーズを協調的に最適化するプログレッシブ最適化手法を提案する。
これにより、使いやすさが向上し、5000フレーム以上の手術ビデオの処理に間に合うように再構築能力を拡張できる。
StereoMISデータセットの大規模な評価により、FLexは競争力のあるポーズ精度を維持しながら、新規ビュー合成の品質を著しく向上することが示された。
関連論文リスト
- High-fidelity Endoscopic Image Synthesis by Utilizing Depth-guided Neural Surfaces [18.948630080040576]
内視鏡画像に適用したNeuSを1フレームの深度マップで補足した新しい大腸部分再建法を提案する。
本手法は, 大腸切片を完全にレンダリングし, 表面の見えない部分を捕捉する際の異常な精度を示す。
このブレークスルーは、安定的で一貫してスケールされた再建を達成するための道を開き、がんスクリーニングの手順と治療介入の質を高めることを約束する。
論文 参考訳(メタデータ) (2024-04-20T18:06:26Z) - EndoGSLAM: Real-Time Dense Reconstruction and Tracking in Endoscopic Surgeries using Gaussian Splatting [53.38166294158047]
EndoGSLAMは鏡視下手術の効率的なアプローチであり、合理化表現と微分ガウス化を統合している。
実験の結果,EndoGSLAMは従来型あるいは神経型SLAMアプローチよりも術中可用性と再建品質のトレードオフが良好であることがわかった。
論文 参考訳(メタデータ) (2024-03-22T11:27:43Z) - Efficient Deformable Tissue Reconstruction via Orthogonal Neural Plane [58.871015937204255]
変形性組織を再建するための高速直交平面(Fast Orthogonal Plane)を導入する。
我々は外科手術を4Dボリュームとして概念化し、それらをニューラルネットワークからなる静的および動的フィールドに分解する。
この分解により4次元空間が増加し、メモリ使用量が減少し、最適化が高速化される。
論文 参考訳(メタデータ) (2023-12-23T13:27:50Z) - BASED: Bundle-Adjusting Surgical Endoscopic Dynamic Video Reconstruction using Neural Radiance Fields [5.773068487121897]
内視鏡的映像から変形可能なシーンを再現することは,多くの応用において重要である。
我々の研究は、シーンの3D暗黙的表現を学習するために、NeRF(Neural Radiance Fields)アプローチを採用しています。
本稿では,ロボット手術の内視鏡的手術シーンについて述べる。
論文 参考訳(メタデータ) (2023-09-27T00:20:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Neural LerPlane Representations for Fast 4D Reconstruction of Deformable
Tissues [52.886545681833596]
LerPlaneは単一視点環境下での手術シーンの高速かつ正確な再構築手法である。
LerPlaneは外科手術を4Dボリュームとして扱い、静的および動的フィールドの明示的な2D平面に分解する。
LerPlaneは静的フィールドを共有し、動的組織モデリングのワークロードを大幅に削減する。
論文 参考訳(メタデータ) (2023-05-31T14:38:35Z) - Learning How To Robustly Estimate Camera Pose in Endoscopic Videos [5.073761189475753]
カメラポーズ推定における2つの幾何学的損失を最小限に抑えるために,奥行きと光学的流れを推定するステレオ内視鏡の解を提案する。
最も重要なことは、入力画像の内容に応じてコントリビューションのバランスをとるために、2つの学習された画素単位の重みマッピングを導入することである。
パブリックなSCAREDデータセットに対する我々のアプローチを検証するとともに、新たなインビボデータセットであるStereoMISを導入しています。
論文 参考訳(メタデータ) (2023-04-17T07:05:01Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - E-DSSR: Efficient Dynamic Surgical Scene Reconstruction with
Transformer-based Stereoscopic Depth Perception [15.927060244702686]
28 fpsの高ダイナミックな手術シーンに対して,効率的な再建パイプラインを提案する。
具体的には,効率的な深度推定のための変圧器を用いた立体視深度知覚を設計する。
提案したパイプラインを,公開Hamlyn Centre内視鏡ビデオデータセットと社内のDaVinciロボット手術データセットの2つのデータセットで評価した。
論文 参考訳(メタデータ) (2021-07-01T05:57:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。