Bootstrapping Reinforcement Learning with Imitation for Vision-Based Agile Flight
- URL: http://arxiv.org/abs/2403.12203v2
- Date: Fri, 25 Oct 2024 11:10:58 GMT
- Title: Bootstrapping Reinforcement Learning with Imitation for Vision-Based Agile Flight
- Authors: Jiaxu Xing, Angel Romero, Leonard Bauersfeld, Davide Scaramuzza,
- Abstract summary: We propose a novel approach that combines the performance of Reinforcement Learning (RL) and the sample efficiency of Imitation Learning (IL)
Our framework contains three phases: training a teacher policy using RL with privileged state information, distilling it into a student policy via IL, and adaptive fine-tuning via RL.
testing in both simulated and real-world scenarios shows our approach can not only learn in scenarios where RL from scratch fails but also outperforms existing IL methods in both robustness and performance.
- Score: 20.92646531472541
- License:
- Abstract: Learning visuomotor policies for agile quadrotor flight presents significant difficulties, primarily from inefficient policy exploration caused by high-dimensional visual inputs and the need for precise and low-latency control. To address these challenges, we propose a novel approach that combines the performance of Reinforcement Learning (RL) and the sample efficiency of Imitation Learning (IL) in the task of vision-based autonomous drone racing. While RL provides a framework for learning high-performance controllers through trial and error, it faces challenges with sample efficiency and computational demands due to the high dimensionality of visual inputs. Conversely, IL efficiently learns from visual expert demonstrations, but it remains limited by the expert's performance and state distribution. To overcome these limitations, our policy learning framework integrates the strengths of both approaches. Our framework contains three phases: training a teacher policy using RL with privileged state information, distilling it into a student policy via IL, and adaptive fine-tuning via RL. Testing in both simulated and real-world scenarios shows our approach can not only learn in scenarios where RL from scratch fails but also outperforms existing IL methods in both robustness and performance, successfully navigating a quadrotor through a race course using only visual information.
Related papers
- Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning [47.785786984974855]
We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks.
Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies.
We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution.
arXiv Detail & Related papers (2024-10-29T08:12:20Z) - MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning [17.437573206368494]
Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks.
Current algorithms suffer from low sample efficiency, limiting their practical applicability.
We present MENTOR, a method that improves both the architecture and optimization of RL agents.
arXiv Detail & Related papers (2024-10-19T04:31:54Z) - Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations.
We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games.
Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Reinforcement Learning in Robotic Motion Planning by Combined
Experience-based Planning and Self-Imitation Learning [7.919213739992465]
High-quality and representative data is essential for both Imitation Learning (IL)- and Reinforcement Learning (RL)-based motion planning tasks.
We propose self-imitation learning by planning plus (SILP+) algorithm, which embeds experience-based planning into the learning architecture.
Various experimental results show that SILP+ achieves better training efficiency higher and more stable success rate in complex motion planning tasks.
arXiv Detail & Related papers (2023-06-11T19:47:46Z) - RVSL: Robust Vehicle Similarity Learning in Real Hazy Scenes Based on
Semi-supervised Learning [24.13217601503959]
Vehicle similarity learning, also called re-identification (ReID), has attracted significant attention in computer vision.
We construct a training paradigm called textbfRVSL which integrates ReID and domain transformation techniques.
We show that the proposed method can achieve state-of-the-art performance on hazy vehicle ReID problems.
arXiv Detail & Related papers (2022-09-18T18:45:06Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - A Practical Contrastive Learning Framework for Single-Image
Super-Resolution [51.422185656787285]
We investigate contrastive learning-based single image super-resolution from two perspectives.
We propose a practical contrastive learning framework for SISR, named PCL-SR.
Compared with existing benchmark methods, we re-train them by our proposed PCL-SR framework and achieve superior performance.
arXiv Detail & Related papers (2021-11-27T15:42:12Z) - Improved Context-Based Offline Meta-RL with Attention and Contrastive
Learning [1.3106063755117399]
We improve upon one of the SOTA OMRL algorithms, FOCAL, by incorporating intra-task attention mechanism and inter-task contrastive learning objectives.
Theoretical analysis and experiments are presented to demonstrate the superior performance, efficiency and robustness of our end-to-end and model free method.
arXiv Detail & Related papers (2021-02-22T05:05:16Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.