Multiplexed quantum state transfer in waveguides
- URL: http://arxiv.org/abs/2403.12222v2
- Date: Thu, 16 May 2024 10:47:59 GMT
- Title: Multiplexed quantum state transfer in waveguides
- Authors: Guillermo F. Peñas, Ricardo Puebla, Juan José García-Ripoll,
- Abstract summary: A quantum network serves as a testbed to show how to maximize the storage and manipulation of quantum information in QED setups.
We analyze two approaches using wavepacket engineering and quantum state transfer protocols.
We show that state-of-the-art experiments can employ dozens of multiplexed photons with global fidelities fulfilling the requirements imposed by fault-tolerant quantum computing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we consider a realistic waveguide implementation of a quantum network that serves as a testbed to show how to maximize the storage and manipulation of quantum information in QED setups. We analyze two approaches using wavepacket engineering and quantum state transfer protocols. First, we propose and design a family of orthogonal photons in the time domain. These photons allow for a selective interaction with distinct targeted qubits. Yet, mode multiplexing employing resonant nodes is largely spoiled by cross-talk effects. This motivates the second approach, namely, frequency multiplexing. Here we explore the limits of frequency multiplexing through the waveguide, analyzing its capabilities to host and faithfully transmit photons of different frequencies within a given bandwidth. We perform detailed one- and two-photon simulations and provide theoretical bounds for the fidelity of coherent quantum state transfer protocols under realistic conditions. Our results show that state-of-the-art experiments can employ dozens of multiplexed photons with global fidelities fulfilling the requirements imposed by fault-tolerant quantum computing. This is with the caveat that the conditions for single-photon fidelity are met.
Related papers
- Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - NOON-state interference in the frequency domain [7.320599749915842]
In this paper, we demonstrate the photon number path entanglement in the frequency domain by implementing a frequency beam splitter.
The two-photon NOON state in a single-mode fiber is generated in the frequency domain, manifesting the two-photon interference with two-fold enhanced resolution.
This successful translation of quantum states in the frequency domain will pave the way toward the discovery of fascinating quantum phenomena and scalable quantum information processing.
arXiv Detail & Related papers (2023-11-01T07:14:27Z) - Multimode Squeezed State for Reconfigurable Quantum Networks at
Telecommunication Wavelengths [0.0]
We present an experimental source of multimode squeezed states of light at telecommunication wavelengths.
Generation at such wavelengths is especially important as it can enable quantum information processing, communication, and sensing beyond the laboratory scale.
Results pave the way for a scalable implementation of continuous variable quantum information protocols at telecommunication wavelengths.
arXiv Detail & Related papers (2023-06-12T17:52:40Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum state transfer between a frequency-encoded photonic qubit and a
quantum dot spin in a nanophotonic waveguide [0.0]
We show that a transfer fidelity exceeding 95% is achievable for experimentally realistic parameters.
Our work sets the stage for deterministic solid-state quantum networks tailored to frequency-encoded photonic qubits.
arXiv Detail & Related papers (2022-03-07T12:47:06Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z) - Microtoroidal resonators enhance long-distance dynamical entanglement
generation in chiral quantum networks [0.0]
Chiral quantum networks provide a promising route for realising quantum information processing and quantum communication.
We harness the directional asymmetry in chirally-coupled single-mode ring resonators to generate entangled state between two atoms.
We report a concurrence of up to 0.969, a huge improvement over the 0.736 which was suggested and analyzed in great detail.
arXiv Detail & Related papers (2019-12-26T15:34:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.