Large language models in 6G security: challenges and opportunities
- URL: http://arxiv.org/abs/2403.12239v1
- Date: Mon, 18 Mar 2024 20:39:34 GMT
- Title: Large language models in 6G security: challenges and opportunities
- Authors: Tri Nguyen, Huong Nguyen, Ahmad Ijaz, Saeid Sheikhi, Athanasios V. Vasilakos, Panos Kostakos,
- Abstract summary: We focus on the security aspects of Large Language Models (LLMs) from the viewpoint of potential adversaries.
This will include the development of a comprehensive threat taxonomy, categorizing various adversary behaviors.
Also, our research will concentrate on how LLMs can be integrated into cybersecurity efforts by defense teams, also known as blue teams.
- Score: 5.073128025996496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid integration of Generative AI (GenAI) and Large Language Models (LLMs) in sectors such as education and healthcare have marked a significant advancement in technology. However, this growth has also led to a largely unexplored aspect: their security vulnerabilities. As the ecosystem that includes both offline and online models, various tools, browser plugins, and third-party applications continues to expand, it significantly widens the attack surface, thereby escalating the potential for security breaches. These expansions in the 6G and beyond landscape provide new avenues for adversaries to manipulate LLMs for malicious purposes. We focus on the security aspects of LLMs from the viewpoint of potential adversaries. We aim to dissect their objectives and methodologies, providing an in-depth analysis of known security weaknesses. This will include the development of a comprehensive threat taxonomy, categorizing various adversary behaviors. Also, our research will concentrate on how LLMs can be integrated into cybersecurity efforts by defense teams, also known as blue teams. We will explore the potential synergy between LLMs and blockchain technology, and how this combination could lead to the development of next-generation, fully autonomous security solutions. This approach aims to establish a unified cybersecurity strategy across the entire computing continuum, enhancing overall digital security infrastructure.
Related papers
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - Enhancing Enterprise Security with Zero Trust Architecture [0.0]
Zero Trust Architecture (ZTA) represents a transformative approach to modern cybersecurity.
ZTA shifts the security paradigm by assuming that no user, device, or system can be trusted by default.
This paper explores the key components of ZTA, such as identity and access management (IAM), micro-segmentation, continuous monitoring, and behavioral analytics.
arXiv Detail & Related papers (2024-10-23T21:53:16Z) - Blockchain for Large Language Model Security and Safety: A Holistic Survey [2.385985842958366]
We aim to assess how to leverage blockchain technology to enhance large language models' security and safety.
We propose a new taxonomy of blockchain for large language models (BC4LLMs) to systematically categorize related works.
Our analysis includes novel frameworks and definitions to delineate security and safety in the context of BC4LLMs.
arXiv Detail & Related papers (2024-07-26T15:24:01Z) - A Comprehensive Overview of Large Language Models (LLMs) for Cyber Defences: Opportunities and Directions [12.044950530380563]
The recent progression of Large Language Models (LLMs) has witnessed great success in the fields of data-centric applications.
We provide an overview for the recent activities of LLMs in cyber defence sections.
Fundamental concepts of the progression of LLMs from Transformers, Pre-trained Transformers, and GPT is presented.
arXiv Detail & Related papers (2024-05-23T12:19:07Z) - Generative AI and Large Language Models for Cyber Security: All Insights You Need [0.06597195879147556]
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs)
We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection.
We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA.
arXiv Detail & Related papers (2024-05-21T13:02:27Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Large Language Models in Cybersecurity: State-of-the-Art [4.990712773805833]
The rise of Large Language Models (LLMs) has revolutionized our comprehension of intelligence bringing us closer to Artificial Intelligence.
This study examines the existing literature, providing a thorough characterization of both defensive and adversarial applications of LLMs within the realm of cybersecurity.
arXiv Detail & Related papers (2024-01-30T16:55:25Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
We show that the continuous and high-dimensional nature of the visual input makes it a weak link against adversarial attacks.
We exploit visual adversarial examples to circumvent the safety guardrail of aligned LLMs with integrated vision.
Our study underscores the escalating adversarial risks associated with the pursuit of multimodality.
arXiv Detail & Related papers (2023-06-22T22:13:03Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.