Enhancing Enterprise Security with Zero Trust Architecture
- URL: http://arxiv.org/abs/2410.18291v1
- Date: Wed, 23 Oct 2024 21:53:16 GMT
- Title: Enhancing Enterprise Security with Zero Trust Architecture
- Authors: Mahmud Hasan,
- Abstract summary: Zero Trust Architecture (ZTA) represents a transformative approach to modern cybersecurity.
ZTA shifts the security paradigm by assuming that no user, device, or system can be trusted by default.
This paper explores the key components of ZTA, such as identity and access management (IAM), micro-segmentation, continuous monitoring, and behavioral analytics.
- Score: 0.0
- License:
- Abstract: Zero Trust Architecture (ZTA) represents a transformative approach to modern cybersecurity, directly addressing the shortcomings of traditional perimeter-based security models. With the rise of cloud computing, remote work, and increasingly sophisticated cyber threats, perimeter defenses have proven ineffective at mitigating risks, particularly those involving insider threats and lateral movement within networks. ZTA shifts the security paradigm by assuming that no user, device, or system can be trusted by default, requiring continuous verification and the enforcement of least privilege access for all entities. This paper explores the key components of ZTA, such as identity and access management (IAM), micro-segmentation, continuous monitoring, and behavioral analytics, and evaluates their effectiveness in reducing vulnerabilities across diverse sectors, including finance, healthcare, and technology. Through case studies and industry reports, the advantages of ZTA in mitigating insider threats and minimizing attack surfaces are discussed. Additionally, the paper addresses the challenges faced during ZTA implementation, such as scalability, integration complexity, and costs, while providing best practices for overcoming these obstacles. Lastly, future research directions focusing on emerging technologies like AI, machine learning, blockchain, and their integration into ZTA are examined to enhance its capabilities further.
Related papers
- Autonomous Identity-Based Threat Segmentation in Zero Trust Architectures [4.169915659794567]
Zero Trust Architectures (ZTA) fundamentally redefine network security by adopting a "trust nothing, verify everything" approach.
This research applies the proposed AI-driven, autonomous, identity-based threat segmentation in ZTA.
arXiv Detail & Related papers (2025-01-10T15:35:02Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks.
In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety.
arXiv Detail & Related papers (2025-01-09T03:59:10Z) - Leveraging Security Observability to Strengthen Security of Digital Ecosystem Architecture [0.0]
complexity poses significant challenges for both observability and security in a digital ecosystem.
Observability allows organizations to diagnose performance issues and detect anomalies in real time.
Security is focused on protecting sensitive data and ensuring service integrity.
This paper examines the interconnections between observability and security within digital ecosystem architectures.
arXiv Detail & Related papers (2024-12-07T11:17:29Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - A Critical Analysis of Foundations, Challenges and Directions for Zero Trust Security in Cloud Environments [0.0]
This review discusses the theoretical frameworks and application prospects of Zero Trust Security (ZTS) in cloud computing context.
This paper analyzes the core principles of ZTS, including micro-segmentation, least privileged access, and continuous monitoring.
Main barriers to implementing zero trust security were outlined, including the dimensions of decreased performance in large-scale production.
arXiv Detail & Related papers (2024-11-09T10:26:02Z) - Security in IS and social engineering -- an overview and state of the art [0.6345523830122166]
The digitization of all processes and the opening to IoT devices has fostered the emergence of a new formof crime, i.e. cybercrime.
The maliciousness of such attacks lies in the fact that they turn users into facilitators of cyber-attacks, to the point of being perceived as the weak link'' of cybersecurity.
Knowing how to anticipate, identifying weak signals and outliers, detect early and react quickly to computer crime are therefore priority issues requiring a prevention and cooperation approach.
arXiv Detail & Related papers (2024-06-17T13:25:27Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Zero Trust: Applications, Challenges, and Opportunities [0.0]
This survey comprehensively explores the theoretical foundations, practical implementations, applications, challenges, and future trends of Zero Trust.
We highlight the relevance of Zero Trust in securing cloud environments, facilitating remote work, and protecting the Internet of Things (IoT) ecosystem.
Integrating Zero Trust with emerging technologies like AI and machine learning augments its efficacy, promising a dynamic and responsive security landscape.
arXiv Detail & Related papers (2023-09-07T09:23:13Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.