EffiPerception: an Efficient Framework for Various Perception Tasks
- URL: http://arxiv.org/abs/2403.12317v1
- Date: Mon, 18 Mar 2024 23:22:37 GMT
- Title: EffiPerception: an Efficient Framework for Various Perception Tasks
- Authors: Xinhao Xiang, Simon Dräger, Jiawei Zhang,
- Abstract summary: EffiPerception is a framework to explore common learning patterns and increase the module.
It could achieve great accuracy robustness with relatively low memory cost under several perception tasks.
EffiPerception could show great accuracy-speed-memory overall performance increase within the four detection and segmentation tasks.
- Score: 6.1522068855729755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accuracy-speed-memory trade-off is always the priority to consider for several computer vision perception tasks. Previous methods mainly focus on a single or small couple of these tasks, such as creating effective data augmentation, feature extractor, learning strategies, etc. These approaches, however, could be inherently task-specific: their proposed model's performance may depend on a specific perception task or a dataset. Targeting to explore common learning patterns and increasing the module robustness, we propose the EffiPerception framework. It could achieve great accuracy-speed performance with relatively low memory cost under several perception tasks: 2D Object Detection, 3D Object Detection, 2D Instance Segmentation, and 3D Point Cloud Segmentation. Overall, the framework consists of three parts: (1) Efficient Feature Extractors, which extract the input features for each modality. (2) Efficient Layers, plug-in plug-out layers that further process the feature representation, aggregating core learned information while pruning noisy proposals. (3) The EffiOptim, an 8-bit optimizer to further cut down the computational cost and facilitate performance stability. Extensive experiments on the KITTI, semantic-KITTI, and COCO datasets revealed that EffiPerception could show great accuracy-speed-memory overall performance increase within the four detection and segmentation tasks, in comparison to earlier, well-respected methods.
Related papers
- LiSD: An Efficient Multi-Task Learning Framework for LiDAR Segmentation and Detection [6.813145466843275]
LiSD is a voxel-based encoder-decoder framework that addresses both segmentation and detection tasks.
It achieves the state-of-the-art performance of 83.3% mIoU on the nuScenes segmentation benchmark for lidar-only methods.
arXiv Detail & Related papers (2024-06-11T07:26:54Z) - A Point-Based Approach to Efficient LiDAR Multi-Task Perception [49.91741677556553]
PAttFormer is an efficient multi-task architecture for joint semantic segmentation and object detection in point clouds.
Unlike other LiDAR-based multi-task architectures, our proposed PAttFormer does not require separate feature encoders for task-specific point cloud representations.
Our evaluations show substantial gains from multi-task learning, improving LiDAR semantic segmentation by +1.7% in mIou and 3D object detection by +1.7% in mAP.
arXiv Detail & Related papers (2024-04-19T11:24:34Z) - A Dynamic Feature Interaction Framework for Multi-task Visual Perception [100.98434079696268]
We devise an efficient unified framework to solve multiple common perception tasks.
These tasks include instance segmentation, semantic segmentation, monocular 3D detection, and depth estimation.
Our proposed framework, termed D2BNet, demonstrates a unique approach to parameter-efficient predictions for multi-task perception.
arXiv Detail & Related papers (2023-06-08T09:24:46Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - HALSIE: Hybrid Approach to Learning Segmentation by Simultaneously
Exploiting Image and Event Modalities [6.543272301133159]
Event cameras detect changes in per-pixel intensity to generate asynchronous event streams.
They offer great potential for accurate semantic map retrieval in real-time autonomous systems.
Existing implementations for event segmentation suffer from sub-based performance.
We propose hybrid end-to-end learning framework HALSIE to reduce inference cost by up to $20times$ versus art.
arXiv Detail & Related papers (2022-11-19T17:09:50Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
Low-cost monocular 3D object detection plays a fundamental role in autonomous driving.
We introduce a Dynamic Feature Reflecting Network, named DFR-Net.
We rank 1st among all the monocular 3D object detectors in the KITTI test set.
arXiv Detail & Related papers (2021-12-28T07:31:18Z) - TRACER: Extreme Attention Guided Salient Object Tracing Network [3.2434811678562676]
We propose TRACER, which detects salient objects with explicit edges by incorporating attention guided tracing modules.
A comparison with 13 existing methods reveals that TRACER achieves state-of-the-art performance on five benchmark datasets.
arXiv Detail & Related papers (2021-12-14T13:20:07Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.