論文の概要: Removing Undesirable Concepts in Text-to-Image Generative Models with Learnable Prompts
- arxiv url: http://arxiv.org/abs/2403.12326v1
- Date: Mon, 18 Mar 2024 23:42:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 17:52:34.450777
- Title: Removing Undesirable Concepts in Text-to-Image Generative Models with Learnable Prompts
- Title(参考訳): 学習可能なプロンプトを用いたテキスト・画像生成モデルにおける望ましくない概念の除去
- Authors: Anh Bui, Khanh Doan, Trung Le, Paul Montague, Tamas Abraham, Dinh Phung,
- Abstract要約: テキストから画像への生成モデルから望ましくない概念を除去する新しい手法を提案する。
この学習可能なプロンプトは、望ましくない概念の知識をそれに移すための追加記憶として機能する。
安定拡散モデルにおける本手法の有効性を示す。
- 参考スコア(独自算出の注目度): 23.04942433104886
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generative models have demonstrated remarkable potential in generating visually impressive content from textual descriptions. However, training these models on unfiltered internet data poses the risk of learning and subsequently propagating undesirable concepts, such as copyrighted or unethical content. In this paper, we propose a novel method to remove undesirable concepts from text-to-image generative models by incorporating a learnable prompt into the cross-attention module. This learnable prompt acts as additional memory to transfer the knowledge of undesirable concepts into it and reduce the dependency of these concepts on the model parameters and corresponding textual inputs. Because of this knowledge transfer into the prompt, erasing these undesirable concepts is more stable and has minimal negative impact on other concepts. We demonstrate the effectiveness of our method on the Stable Diffusion model, showcasing its superiority over state-of-the-art erasure methods in terms of removing undesirable content while preserving other unrelated elements.
- Abstract(参考訳): 生成モデルは、テキスト記述から視覚的に印象的なコンテンツを生成する素晴らしい可能性を示している。
しかし、これらのモデルをフィルタリングされていないインターネットデータでトレーニングすると、学習のリスクが生じ、著作権や非倫理的コンテンツのような望ましくない概念が伝播する。
本稿では,学習可能なプロンプトをクロスアテンションモジュールに組み込むことで,テキスト・画像生成モデルから望ましくない概念を除去する手法を提案する。
この学習可能なプロンプトは、望ましくない概念の知識をそれに移し、これらの概念のモデルパラメータと対応するテキスト入力への依存を減らすために追加記憶として機能する。
このような知識がプロンプトに伝達されるため、これらの望ましくない概念を根絶することはより安定し、他の概念に最小限の負の影響を与える。
本研究では,本手法の安定拡散モデルにおける有効性を示すとともに,非不要な要素を保存しつつ,不要な内容の除去という観点から,最先端の消去手法よりも優れていることを示す。
関連論文リスト
- Erasing Undesirable Concepts in Diffusion Models with Adversarial Preservation [22.3077678575067]
拡散モデルは、テキストから視覚的に印象的なコンテンツを生成するのに優れています。
本稿では,パラメータ変化によって最も影響を受ける概念を同定し,保存することを提案する。
安定拡散モデルを用いて本手法の有効性を実証し, 不要なコンテンツの除去において, 最先端の消去方法より優れていることを示す。
論文 参考訳(メタデータ) (2024-10-21T03:40:29Z) - EIUP: A Training-Free Approach to Erase Non-Compliant Concepts Conditioned on Implicit Unsafe Prompts [32.590822043053734]
非有毒なテキストは、暗黙の安全でないプロンプトと呼ばれる非準拠のイメージを生成するリスクを伴っている。
我々は、非準拠の概念を消去プロンプトに組み込む、単純で効果的なアプローチを提案する。
本手法は,画像の忠実度を高いスコアで評価しながら,優れた消去効果を示す。
論文 参考訳(メタデータ) (2024-08-02T05:17:14Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
本稿では,Reliable and Efficient Concept Erasure (RECE)を提案する。
派生した埋め込みによって表現される不適切なコンテンツを緩和するために、RECEはそれらをクロスアテンション層における無害な概念と整合させる。
新たな表現埋め込みの導出と消去を反復的に行い、不適切な概念の徹底的な消去を実現する。
論文 参考訳(メタデータ) (2024-07-17T08:04:28Z) - Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion [51.931083971448885]
本稿では,Human Feedback Inversion (HFI) というフレームワークを提案する。
実験の結果,画像品質を維持しながら,好ましくないコンテンツ生成を著しく削減し,公的な領域におけるAIの倫理的展開に寄与することが示された。
論文 参考訳(メタデータ) (2024-07-17T05:21:41Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
テキスト・ツー・イメージ(T2I)拡散モデルは、テキスト・プロンプトと密接に対応した画像を生成する際、例外的な機能を示す。
モデルは、暴力やヌードの画像を生成したり、不適切な文脈で公共の人物の無許可の肖像画を作成するなど、悪意ある目的のために利用することができる。
悪質な概念や望ましくない概念の発生を防ぐために拡散モデルを変更する概念除去法が提案されている。
論文 参考訳(メタデータ) (2024-06-21T03:58:44Z) - Pruning for Robust Concept Erasing in Diffusion Models [27.67237515704348]
概念消去のための新しいプルーニングベースの戦略を導入する。
本手法は, 除去対象概念に関連する重要なパラメータを選択的に抽出し, 概念関連ニューロンの感度を低下させる。
実験の結果, 逆入力に抵抗するモデルの能力は著しく向上した。
論文 参考訳(メタデータ) (2024-05-26T11:42:20Z) - Get What You Want, Not What You Don't: Image Content Suppression for
Text-to-Image Diffusion Models [86.92711729969488]
テキスト埋め込みの操作方法を分析し、不要なコンテンツを除去する。
第1は、テキスト埋め込み行列を正規化し、望ましくないコンテンツを効果的に抑制する。
第2の方法は、プロンプトの不要なコンテンツ生成をさらに抑制し、所望のコンテンツの生成を促進することである。
論文 参考訳(メタデータ) (2024-02-08T03:15:06Z) - Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers [24.64639078273091]
テキストから画像への拡散モデルにおける概念消去は、対象概念に関連する画像の生成から事前学習された拡散モデルを無効にすることを目的としている。
軽量エローザ(レセラー)による信頼性概念消去の提案
論文 参考訳(メタデータ) (2023-11-29T15:19:49Z) - Towards Safe Self-Distillation of Internet-Scale Text-to-Image Diffusion
Models [63.20512617502273]
テキストから画像への拡散モデルにおいて,問題のあるコンテンツ生成を防止するため,SDDと呼ばれる手法を提案する。
本手法は,画像の全体的な品質を劣化させることなく,生成した画像から有害なコンテンツをはるかに多く除去する。
論文 参考訳(メタデータ) (2023-07-12T07:48:29Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
大規模テキスト・画像拡散モデルでは、強力な構成能力を持つ高忠実度画像を生成することができる。
これらのモデルは典型的には膨大な量のインターネットデータに基づいて訓練されており、しばしば著作権のある資料、ライセンスされた画像、個人写真を含んでいる。
本稿では,事前訓練されたモデルにおいて,目標概念の生成を防止し,効率的に概念を宣言する手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T17:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。