論文の概要: Deep Few-view High-resolution Photon-counting CT at Halved Dose for Extremity Imaging
- arxiv url: http://arxiv.org/abs/2403.12331v2
- Date: Thu, 16 Oct 2025 16:10:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 21:15:14.394444
- Title: Deep Few-view High-resolution Photon-counting CT at Halved Dose for Extremity Imaging
- Title(参考訳): 極端イメージングのためのHalved Doseにおける高分解能光子計数CT
- Authors: Mengzhou Li, Chuang Niu, Ge Wang, Maya R Amma, Krishna M Chapagain, Stefan Gabrielson, Andrew Li, Kevin Jonker, Niels de Ruiter, Jennifer A Clark, Phil Butler, Anthony Butler, Hengyong Yu,
- Abstract要約: ニュージーランドの臨床試験において,PCCT画像の半減量と2倍の速度で再現する深層学習に基づくアプローチを提案する。
具体的には、GPUメモリを緩和するパッチベースのボリュームリファインメントネットワークを設計し、合成データを用いたトレーニングネットワークを構築し、モデルベースの反復リファインメントを使用して合成データと臨床データのギャップを埋める。
- 参考スコア(独自算出の注目度): 9.900942764883789
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: X-ray photon-counting computed tomography (PCCT) for extremity allows multi-energy high-resolution (HR) imaging but its radiation dose can be further improved. Despite the great potential of deep learning techniques, their application in HR volumetric PCCT reconstruction has been challenged by the large memory burden, training data scarcity, and domain gap issues. In this paper, we propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed validated in a New Zealand clinical trial. Specifically, we design a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and clinical data. Our results in a reader study of 8 patients from the clinical trial demonstrate a great potential to cut the radiation dose to half that of the clinical PCCT standard without compromising image quality and diagnostic value.
- Abstract(参考訳): X線光子計数計算トモグラフィ(PCCT)は多エネルギー高分解能(HR)イメージングを可能にするが、その放射線線量はさらに改善できる。
ディープラーニング技術の大きな可能性にもかかわらず、HRボリュームPCCT再構成への応用は、大きなメモリ負荷、データ不足のトレーニング、ドメインギャップの問題によって困難になってきた。
本稿では,ニュージーランドの臨床試験において,PCCT画像の半減量と2倍の速度で再現する深層学習に基づくアプローチを提案する。
具体的には、GPUメモリの制限を軽減するためにパッチベースのボリュームリファインメントネットワークを設計し、合成データを用いたトレーニングネットワークを設計し、モデルベースの反復リファインメントを使用して合成データと臨床データのギャップを埋める。
臨床治験患者8名を対象に, 画像品質と診断価値を損なうことなく, 臨床PCCT基準の半分に放射線線量削減の可能性を示した。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
様々な計測アンサンプパターンと画像解像度に頑健な統合MRI再構成モデルを提案する。
我々のモデルは、拡散法よりも600$times$高速な推論で、最先端CNN(End-to-End VarNet)の4dBでSSIMを11%改善し、PSNRを4dB改善する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Feature-oriented Deep Learning Framework for Pulmonary Cone-beam CT
(CBCT) Enhancement with Multi-task Customized Perceptual Loss [9.59233136691378]
コーンビームCT(CBCT)は画像誘導放射線治療中に定期的に収集される。
近年, 深層学習に基づくCBCT強調法は, 人工物抑制に有望な成果を上げている。
本稿では,高画質CBCT画像から高画質CTライク画像へ変換する特徴指向ディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-01T10:09:01Z) - SdCT-GAN: Reconstructing CT from Biplanar X-Rays with Self-driven
Generative Adversarial Networks [6.624839896733912]
本稿では,3次元CT画像の再構成のための自己駆動型生成対向ネットワークモデル(SdCT-GAN)を提案する。
識別器に新しいオートエンコーダ構造を導入することにより、画像の詳細により多くの注意を払っている。
LPIPS評価基準は,既存画像よりも微細な輪郭やテクスチャを定量的に評価できる。
論文 参考訳(メタデータ) (2023-09-10T08:16:02Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Multi-scale reconstruction of undersampled spectral-spatial OCT data for
coronary imaging using deep learning [1.8359410255568984]
血管内光コヒーレンス断層撮影(IV OCT)は冠状動脈疾患(CAD)の診断・治療に最適であると考えられる。
高分解能と高速走査率のトレードオフがある。
本稿では,スペクトル領域と空間領域の両方でサンプリングプロセスをダウンスケールするスペクトル空間取得手法を提案する。
論文 参考訳(メタデータ) (2022-04-25T16:37:25Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
本研究の目的は、ノイズや不完全なデータから高品質なCT画像を再構成するために、単一のニューラルネットワークを訓練することである。
ネットワークには、データ内の長距離依存関係をモデル化するセルフアテンションブロックが含まれている。
我々のアプローチはCIRCLE GANに匹敵する全体的なパフォーマンスを示し、他の2つのアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-12-23T19:20:38Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - High-quality Low-dose CT Reconstruction Using Convolutional Neural
Networks with Spatial and Channel Squeeze and Excitation [15.05273611411106]
低線量CT(Low-dose Computed Tomography)によるCT画像再構成のための高品質画像ネットワーク(HQINET)を提案する。
HQINETは畳み込みエンコーダ-デコーダアーキテクチャであり、エンコーダを使用して3つの連続スライスから空間的および時間的情報を抽出した。
論文 参考訳(メタデータ) (2021-04-01T08:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。