論文の概要: DMAD: Dual Memory Bank for Real-World Anomaly Detection
- arxiv url: http://arxiv.org/abs/2403.12362v1
- Date: Tue, 19 Mar 2024 02:16:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 15:51:27.202405
- Title: DMAD: Dual Memory Bank for Real-World Anomaly Detection
- Title(参考訳): DMAD: リアルタイム異常検出のためのデュアルメモリバンク
- Authors: Jianlong Hu, Xu Chen, Zhenye Gan, Jinlong Peng, Shengchuan Zhang, Jiangning Zhang, Yabiao Wang, Chengjie Wang, Liujuan Cao, Rongrong Ji,
- Abstract要約: 我々は、DMAD(Anomaly Detection)のための表現学習を強化したDual Memory Bankという新しいフレームワークを提案する。
DMADはデュアルメモリバンクを用いて特徴距離を計算し、正常パターンと異常パターンの間の特徴注意を計算している。
DMADをMVTec-ADおよびVisAデータセット上で評価した。
- 参考スコア(独自算出の注目度): 90.97573828481832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training a unified model is considered to be more suitable for practical industrial anomaly detection scenarios due to its generalization ability and storage efficiency. However, this multi-class setting, which exclusively uses normal data, overlooks the few but important accessible annotated anomalies in the real world. To address the challenge of real-world anomaly detection, we propose a new framework named Dual Memory bank enhanced representation learning for Anomaly Detection (DMAD). This framework handles both unsupervised and semi-supervised scenarios in a unified (multi-class) setting. DMAD employs a dual memory bank to calculate feature distance and feature attention between normal and abnormal patterns, thereby encapsulating knowledge about normal and abnormal instances. This knowledge is then used to construct an enhanced representation for anomaly score learning. We evaluated DMAD on the MVTec-AD and VisA datasets. The results show that DMAD surpasses current state-of-the-art methods, highlighting DMAD's capability in handling the complexities of real-world anomaly detection scenarios.
- Abstract(参考訳): 統一モデルの訓練は、その一般化能力と記憶効率により、実用上の産業異常検出シナリオにより適していると考えられる。
しかし、通常のデータのみを使用するこのマルチクラス設定は、現実の世界では数少ない、しかし重要なアノテートされたアノテートされた異常を無視する。
実世界の異常検出の課題に対処するため,Dual Memory Bank と呼ばれる新しいフレームワークを提案する。
このフレームワークは、統一された(複数クラスの)設定で、教師なしシナリオと半教師なしシナリオの両方を処理する。
DMADはデュアルメモリバンクを用いて、正常なパターンと異常なパターンの間の特徴距離と特徴的注意を計算し、通常のパターンと異常なパターンに関する知識をカプセル化する。
この知識は、異常スコア学習のための拡張された表現を構築するために使用される。
DMADをMVTec-ADおよびVisAデータセット上で評価した。
その結果、DMADは現在の最先端手法を超越し、実世界の異常検出シナリオの複雑さを扱うDMADの能力を強調した。
関連論文リスト
- RADAR: Robust Two-stage Modality-incomplete Industrial Anomaly Detection [61.71770293720491]
本稿では,2段階のロバスト・モードアリティ不完全融合とFlaAmewoRkの検出について提案する。
我々のブートストラッピング哲学は、MIIADの2段階を強化し、マルチモーダルトランスの堅牢性を向上させることである。
実験の結果,提案手法は従来のMIAD法よりも有効性とロバスト性に優れていた。
論文 参考訳(メタデータ) (2024-10-02T16:47:55Z) - A SAM-guided Two-stream Lightweight Model for Anomaly Detection [50.28310943263051]
我々は、教師なし異常検出(STLM)のためのSAM誘導2ストリーム軽量モデルを提案する。
MVTec ADベンチマークを用いて行った実験により,約16Mのパラメータを持ち,20msの推論時間を実現したSTLMは,最先端の手法と効果的に競合することが示された。
論文 参考訳(メタデータ) (2024-02-29T13:29:10Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Beyond the Benchmark: Detecting Diverse Anomalies in Videos [0.6993026261767287]
ビデオ異常検出(VAD)は、現代の監視システムにおいて重要な役割を担い、現実の状況における様々な異常を識別することを目的としている。
現在のベンチマークデータセットは、新しいオブジェクト検出のような単純な単一フレームの異常を主に強調している。
我々は,従来のベンチマーク境界を超える複雑な異常を包含するVAD調査の拡大を提唱する。
論文 参考訳(メタデータ) (2023-10-03T09:22:06Z) - Dual Memory Units with Uncertainty Regulation for Weakly Supervised
Video Anomaly Detection [15.991784541576788]
ビデオとセグメントレベルのラベル指向の既存のアプローチは、主に異常データの表現の抽出に重点を置いている。
本研究では、正規データの表現と異常データの識別特徴の両方を学習するために、不確実性制御デュアルメモリユニット(UR-DMU)モデルを提案する。
我々の手法は、最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2023-02-10T10:39:40Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己教師型予測畳み込み抑止ブロック(SSPCAB)を3次元マスク付き畳み込み層,チャンネルワイドアテンション用トランスフォーマー,およびハマーロスに基づく新たな自己教師型目標を用いて拡張する。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - Unsupervised Face Morphing Attack Detection via Self-paced Anomaly
Detection [8.981081097203088]
SPL-MAD(Self-paced Anomaly Detection)による全く教師なしのモーフィング攻撃検出ソリューションを提案する。
我々は、既存の大規模顔認識(FR)データセットと、畳み込みオートエンコーダの教師なしの性質を活用している。
実験の結果,提案したSPL-MADソリューションは広範囲の教師付きMADソリューションの全体的な性能より優れていた。
論文 参考訳(メタデータ) (2022-08-11T12:21:50Z) - Enhancing Unsupervised Anomaly Detection with Score-Guided Network [13.127091975959358]
異常検出は、医療や金融システムなど、さまざまな現実世界のアプリケーションにおいて重要な役割を担っている。
正規データと異常データの間の異常スコアの差を学習・拡大するために,スコア誘導正規化を用いた新しいスコアネットワークを提案する。
次に,スコア誘導型オートエンコーダ(SG-AE)を提案する。
論文 参考訳(メタデータ) (2021-09-10T06:14:53Z) - Unsupervised Video Anomaly Detection via Normalizing Flows with Implicit
Latent Features [8.407188666535506]
既存のほとんどのメソッドはオートエンコーダを使用して、通常のビデオの再構築を学ぶ。
本稿では2つのエンコーダが暗黙的に外観と動きの特徴をモデル化する構造である暗黙の2経路AE(ITAE)を提案する。
通常のシーンの複雑な分布については,ITAE特徴量の正規密度推定を提案する。
NFモデルは暗黙的に学習された機能を通じて正常性を学ぶことでITAEのパフォーマンスを高める。
論文 参考訳(メタデータ) (2020-10-15T05:02:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。