Pipelined Biomedical Event Extraction Rivaling Joint Learning
- URL: http://arxiv.org/abs/2403.12386v1
- Date: Tue, 19 Mar 2024 02:52:58 GMT
- Title: Pipelined Biomedical Event Extraction Rivaling Joint Learning
- Authors: Pengchao Wu, Xuefeng Li, Jinghang Gu, Longhua Qian, Guodong Zhou,
- Abstract summary: We propose an n-ary relation extraction method based on the BERT pre-training model to construct Binding events.
Our method achieves promising results on the GE11 and GE13 corpora of the BioNLP shared task with F1 scores of 63.14% and 59.40%, respectively.
- Score: 15.621296083774931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biomedical event extraction is an information extraction task to obtain events from biomedical text, whose targets include the type, the trigger, and the respective arguments involved in an event. Traditional biomedical event extraction usually adopts a pipelined approach, which contains trigger identification, argument role recognition, and finally event construction either using specific rules or by machine learning. In this paper, we propose an n-ary relation extraction method based on the BERT pre-training model to construct Binding events, in order to capture the semantic information about an event's context and its participants. The experimental results show that our method achieves promising results on the GE11 and GE13 corpora of the BioNLP shared task with F1 scores of 63.14% and 59.40%, respectively. It demonstrates that by significantly improving theperformance of Binding events, the overall performance of the pipelined event extraction approach or even exceeds those of current joint learning methods.
Related papers
- Unmixing Noise from Hawkes Process to Model Learned Physiological Events [10.070697447427174]
This work introduces UNHaP, a novel approach addressing the joint learning of temporal structures in events.
By treating the event detection output as a mixture of structured and unstructured events, UNHaP efficiently unmixes these processes and estimates their parameters.
arXiv Detail & Related papers (2024-06-17T09:57:48Z) - Boosting Event Extraction with Denoised Structure-to-Text Augmentation [52.21703002404442]
Event extraction aims to recognize pre-defined event triggers and arguments from texts.
Recent data augmentation methods often neglect the problem of grammatical incorrectness.
We propose a denoised structure-to-text augmentation framework for event extraction DAEE.
arXiv Detail & Related papers (2023-05-16T16:52:07Z) - Avoiding Post-Processing with Event-Based Detection in Biomedical
Signals [69.34035527763916]
We propose an event-based modeling framework that directly works with events as learning targets.
We show that event-based modeling (without post-processing) performs on par with or better than epoch-based modeling with extensive post-processing.
arXiv Detail & Related papers (2022-09-22T13:44:13Z) - DICE: Data-Efficient Clinical Event Extraction with Generative Models [93.49354508621232]
Event extraction for the clinical domain is an under-explored research area.
We introduce DICE, a robust and data-efficient generative model for clinical event extraction.
Our experiments demonstrate state-of-the-art performances of DICE for clinical and news domain event extraction.
arXiv Detail & Related papers (2022-08-16T23:12:04Z) - Learning Constraints and Descriptive Segmentation for Subevent Detection [74.48201657623218]
We propose an approach to learning and enforcing constraints that capture dependencies between subevent detection and EventSeg prediction.
We adopt Rectifier Networks for constraint learning and then convert the learned constraints to a regularization term in the loss function of the neural model.
arXiv Detail & Related papers (2021-09-13T20:50:37Z) - Document-Level Event Argument Extraction by Conditional Generation [75.73327502536938]
Event extraction has long been treated as a sentence-level task in the IE community.
We propose a document-level neural event argument extraction model by formulating the task as conditional generation following event templates.
We also compile a new document-level event extraction benchmark dataset WikiEvents.
arXiv Detail & Related papers (2021-04-13T03:36:38Z) - Back to Prior Knowledge: Joint Event Causality Extraction via
Convolutional Semantic Infusion [5.566928318239452]
Joint event and causality extraction is a challenging yet essential task in information retrieval and data mining.
We propose convolutional knowledge infusion for frequent n-grams with different windows of length within a joint extraction framework.
Our model significantly outperforms the strong BERT+CSNN baseline.
arXiv Detail & Related papers (2021-02-19T13:31:46Z) - Big Green at WNUT 2020 Shared Task-1: Relation Extraction as
Contextualized Sequence Classification [2.1574781022415364]
We introduce a system which uses contextualized knowledge graph completion to classify relations and events between known entities in a noisy text environment.
We report results which show that our system is able to effectively extract relations and events from a dataset of wet lab protocols.
arXiv Detail & Related papers (2020-12-07T06:38:53Z) - Document-level Event Extraction with Efficient End-to-end Learning of
Cross-event Dependencies [37.96254956540803]
We propose an end-to-end model leveraging Deep Value Networks (DVN), a structured prediction algorithm, to efficiently capture cross-event dependencies for document-level event extraction.
Our approach achieves comparable performance to CRF-based models on ACE05, while enjoys significantly higher computational efficiency.
arXiv Detail & Related papers (2020-10-24T05:28:16Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event-extraction is a sequence-to-sequence labeling task with a tag set composed of tags of triggers and entities.
We propose a Cross-Supervised Mechanism (CSM) to alternately supervise the extraction of triggers or entities.
Our approach outperforms the state-of-the-art methods in both entity and trigger extraction.
arXiv Detail & Related papers (2020-10-13T11:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.