Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning
- URL: http://arxiv.org/abs/2403.12416v3
- Date: Fri, 14 Jun 2024 03:18:18 GMT
- Title: Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning
- Authors: Chong Ma, Hanqi Jiang, Wenting Chen, Yiwei Li, Zihao Wu, Xiaowei Yu, Zhengliang Liu, Lei Guo, Dajiang Zhu, Tuo Zhang, Dinggang Shen, Tianming Liu, Xiang Li,
- Abstract summary: Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
- Score: 65.54680361074882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the medical multi-modal frameworks, the alignment of cross-modality features presents a significant challenge. However, existing works have learned features that are implicitly aligned from the data, without considering the explicit relationships in the medical context. This data-reliance may lead to low generalization of the learned alignment relationships. In this work, we propose the Eye-gaze Guided Multi-modal Alignment (EGMA) framework to harness eye-gaze data for better alignment of medical visual and textual features. We explore the natural auxiliary role of radiologists' eye-gaze data in aligning medical images and text, and introduce a novel approach by using eye-gaze data, collected synchronously by radiologists during diagnostic evaluations. We conduct downstream tasks of image classification and image-text retrieval on four medical datasets, where EGMA achieved state-of-the-art performance and stronger generalization across different datasets. Additionally, we explore the impact of varying amounts of eye-gaze data on model performance, highlighting the feasibility and utility of integrating this auxiliary data into multi-modal alignment framework.
Related papers
- ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
We announce MVKL, the first multimodal mammography dataset encompassing multi-view images, detailed manifestations and reports.
Based on this dataset, we focus on the challanging task of unsupervised pretraining.
We propose ViKL, a framework that synergizes Visual, Knowledge, and Linguistic features.
arXiv Detail & Related papers (2024-09-24T05:01:23Z) - GEM: Context-Aware Gaze EstiMation with Visual Search Behavior Matching for Chest Radiograph [32.1234295417225]
We propose a context-aware Gaze EstiMation (GEM) network that utilizes eye gaze data collected from radiologists to simulate their visual search behavior patterns.
It consists of a context-awareness module, visual behavior graph construction, and visual behavior matching.
Experiments on four publicly available datasets demonstrate the superiority of GEM over existing methods.
arXiv Detail & Related papers (2024-08-10T09:46:25Z) - HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling [4.44283662576491]
We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements.
We show that our framework outperforms both single-modality models and state-of-the-art MRI-tabular data fusion methods.
arXiv Detail & Related papers (2024-03-20T05:50:04Z) - AliFuse: Aligning and Fusing Multi-modal Medical Data for Computer-Aided
Diagnosis [1.9450973046619378]
We propose a transformer-based framework, called Alifuse, for aligning and fusing multi-modal medical data.
We apply Alifuse to classify Alzheimer's disease and obtain state-of-the-art performance on five public datasets.
arXiv Detail & Related papers (2024-01-02T07:28:21Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - C^2M-DoT: Cross-modal consistent multi-view medical report generation
with domain transfer network [67.97926983664676]
We propose a cross-modal consistent multi-view medical report generation with a domain transfer network (C2M-DoT)
C2M-DoT substantially outperforms state-of-the-art baselines in all metrics.
arXiv Detail & Related papers (2023-10-09T02:31:36Z) - KiUT: Knowledge-injected U-Transformer for Radiology Report Generation [10.139767157037829]
Radiology report generation aims to automatically generate a clinically accurate and coherent paragraph from the X-ray image.
We propose a Knowledge-injected U-Transformer (KiUT) to learn multi-level visual representation and adaptively distill the information.
arXiv Detail & Related papers (2023-06-20T07:27:28Z) - Cross-modal Memory Networks for Radiology Report Generation [30.13916304931662]
Cross-modal memory networks (CMN) are proposed to enhance the encoder-decoder framework for radiology report generation.
Our model is able to better align information from radiology images and texts so as to help generating more accurate reports in terms of clinical indicators.
arXiv Detail & Related papers (2022-04-28T02:32:53Z) - AlignTransformer: Hierarchical Alignment of Visual Regions and Disease
Tags for Medical Report Generation [50.21065317817769]
We propose an AlignTransformer framework, which includes the Align Hierarchical Attention (AHA) and the Multi-Grained Transformer (MGT) modules.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that the AlignTransformer can achieve results competitive with state-of-the-art methods on the two datasets.
arXiv Detail & Related papers (2022-03-18T13:43:53Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.