ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features
- URL: http://arxiv.org/abs/2409.15744v1
- Date: Tue, 24 Sep 2024 05:01:23 GMT
- Title: ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features
- Authors: Xin Wei, Yaling Tao, Changde Du, Gangming Zhao, Yizhou Yu, Jinpeng Li,
- Abstract summary: We announce MVKL, the first multimodal mammography dataset encompassing multi-view images, detailed manifestations and reports.
Based on this dataset, we focus on the challanging task of unsupervised pretraining.
We propose ViKL, a framework that synergizes Visual, Knowledge, and Linguistic features.
- Score: 54.37042005469384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mammography is the primary imaging tool for breast cancer diagnosis. Despite significant strides in applying deep learning to interpret mammography images, efforts that focus predominantly on visual features often struggle with generalization across datasets. We hypothesize that integrating additional modalities in the radiology practice, notably the linguistic features of reports and manifestation features embodying radiological insights, offers a more powerful, interpretable and generalizable representation. In this paper, we announce MVKL, the first multimodal mammography dataset encompassing multi-view images, detailed manifestations and reports. Based on this dataset, we focus on the challanging task of unsupervised pretraining and propose ViKL, a innovative framework that synergizes Visual, Knowledge, and Linguistic features. This framework relies solely on pairing information without the necessity for pathology labels, which are often challanging to acquire. ViKL employs a triple contrastive learning approach to merge linguistic and knowledge-based insights with visual data, enabling both inter-modality and intra-modality feature enhancement. Our research yields significant findings: 1) Integrating reports and manifestations with unsupervised visual pretraining, ViKL substantially enhances the pathological classification and fosters multimodal interactions. 2) Manifestations can introduce a novel hard negative sample selection mechanism. 3) The multimodal features demonstrate transferability across different datasets. 4) The multimodal pretraining approach curbs miscalibrations and crafts a high-quality representation space. The MVKL dataset and ViKL code are publicly available at https://github.com/wxwxwwxxx/ViKL to support a broad spectrum of future research.
Related papers
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - MOSMOS: Multi-organ segmentation facilitated by medical report supervision [10.396987980136602]
We propose a novel pre-training & fine-tuning framework for Multi-Organ Supervision (MOS)
Specifically, we first introduce global contrastive learning to align medical image-report pairs in the pre-training stage.
To remedy the discrepancy, we further leverage multi-label recognition to implicitly learn the semantic correspondence between image pixels and organ tags.
arXiv Detail & Related papers (2024-09-04T03:46:17Z) - Integrating Medical Imaging and Clinical Reports Using Multimodal Deep Learning for Advanced Disease Analysis [3.8758525789991896]
An innovative multi-modal deep learning model is proposed to deeply integrate heterogeneous information from medical images and clinical reports.
For medical images, convolutional neural networks were used to extract high-dimensional features and capture key visual information.
For clinical report text, a two-way long and short-term memory network combined with an attention mechanism is used for deep semantic understanding.
arXiv Detail & Related papers (2024-05-23T02:22:10Z) - DeViDe: Faceted medical knowledge for improved medical vision-language pre-training [1.6567372257085946]
Vision-language pre-training for chest X-rays has made significant strides, primarily by utilizing paired radiographs and radiology reports.
We propose DeViDe, a transformer-based method that leverages radiographic descriptions from the open web.
DeViDe incorporates three key features for knowledge-augmented vision language alignment: First, a large-language model-based augmentation is employed to homogenise medical knowledge from diverse sources.
In zero-shot settings, DeViDe performs comparably to fully supervised models on external datasets and achieves state-of-the-art results on three large-scale datasets.
arXiv Detail & Related papers (2024-04-04T17:40:06Z) - Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
arXiv Detail & Related papers (2024-03-19T03:59:14Z) - Intensive Vision-guided Network for Radiology Report Generation [22.030289124516326]
We propose a Globally-intensive Attention (GIA) module in the medical image encoder to simulate and integrate multi-view vision perception.
We also explore how to involve multi-modal signals to generate precisely matched reports, i.e., how to integrate previously predicted words with region-aware visual content in next word prediction.
arXiv Detail & Related papers (2024-02-06T06:46:46Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - DiMBERT: Learning Vision-Language Grounded Representations with
Disentangled Multimodal-Attention [101.99313208598569]
Vision-and-language (V-L) tasks require the system to understand both vision content and natural language.
We propose DiMBERT (short for Disentangled Multimodal-Attention BERT), which applies separated attention spaces for vision and language.
We show that DiMBERT sets new state-of-the-art performance on three tasks.
arXiv Detail & Related papers (2022-10-28T23:00:40Z) - Multi-modal Understanding and Generation for Medical Images and Text via
Vision-Language Pre-Training [5.119201893752376]
We propose Medical Vision Language Learner (MedViLL) which adopts a Transformer-based architecture combined with a novel multimodal attention masking scheme.
We empirically demonstrate the superior downstream task performance of MedViLL against various baselines including task-specific architectures.
arXiv Detail & Related papers (2021-05-24T15:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.