Do Generated Data Always Help Contrastive Learning?
- URL: http://arxiv.org/abs/2403.12448v1
- Date: Tue, 19 Mar 2024 05:17:47 GMT
- Title: Do Generated Data Always Help Contrastive Learning?
- Authors: Yifei Wang, Jizhe Zhang, Yisen Wang,
- Abstract summary: Contrastive Learning (CL) has emerged as one of the most successful paradigms for unsupervised visual representation learning.
With the rise of generative models, especially diffusion models, the ability to generate realistic images close to the real data distribution has been well recognized.
However, we find that the generated data (even from a good diffusion model like DDPM) may sometimes even harm contrastive learning.
- Score: 32.58214897368031
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive Learning (CL) has emerged as one of the most successful paradigms for unsupervised visual representation learning, yet it often depends on intensive manual data augmentations. With the rise of generative models, especially diffusion models, the ability to generate realistic images close to the real data distribution has been well recognized. These generated high-equality images have been successfully applied to enhance contrastive representation learning, a technique termed ``data inflation''. However, we find that the generated data (even from a good diffusion model like DDPM) may sometimes even harm contrastive learning. We investigate the causes behind this failure from the perspective of both data inflation and data augmentation. For the first time, we reveal the complementary roles that stronger data inflation should be accompanied by weaker augmentations, and vice versa. We also provide rigorous theoretical explanations for these phenomena via deriving its generalization bounds under data inflation. Drawing from these insights, we propose Adaptive Inflation (AdaInf), a purely data-centric strategy without introducing any extra computation cost. On benchmark datasets, AdaInf can bring significant improvements for various contrastive learning methods. Notably, without using external data, AdaInf obtains 94.70% linear accuracy on CIFAR-10 with SimCLR, setting a new record that surpasses many sophisticated methods. Code is available at https://github.com/PKU-ML/adainf.
Related papers
- Empowering Graph Invariance Learning with Deep Spurious Infomax [27.53568333416706]
We introduce a novel graph invariance learning paradigm, which induces a robust and general inductive bias.
EQuAD shows stable and enhanced performance across different degrees of bias in synthetic datasets and challenging real-world datasets up to $31.76%$.
arXiv Detail & Related papers (2024-07-13T14:18:47Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - DualAug: Exploiting Additional Heavy Augmentation with OOD Data
Rejection [77.6648187359111]
We propose a novel data augmentation method, named textbfDualAug, to keep the augmentation in distribution as much as possible at a reasonable time and computational cost.
Experiments on supervised image classification benchmarks show that DualAug improve various automated data augmentation method.
arXiv Detail & Related papers (2023-10-12T08:55:10Z) - DiffAug: Enhance Unsupervised Contrastive Learning with Domain-Knowledge-Free Diffusion-based Data Augmentation [48.25619775814776]
This paper proposes DiffAug, a novel unsupervised contrastive learning technique with diffusion mode-based positive data generation.
DiffAug consists of a semantic encoder and a conditional diffusion model; the conditional diffusion model generates new positive samples conditioned on the semantic encoding.
Experimental evaluations show that DiffAug outperforms hand-designed and SOTA model-based augmentation methods on DNA sequence, visual, and bio-feature datasets.
arXiv Detail & Related papers (2023-09-10T13:28:46Z) - Toward Understanding Generative Data Augmentation [16.204251285425478]
We show that generative data augmentation can enjoy a faster learning rate when the order of divergence term is $o(maxleft( log(m)beta_m, 1 / sqrtm)right)$.
We prove that in both cases, though generative data augmentation does not enjoy a faster learning rate, it can improve the learning guarantees at a constant level when the train set is small.
arXiv Detail & Related papers (2023-05-27T13:46:08Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting.
We propose a novel augmentation-aware self-supervised discriminator that predicts the augmentation parameter of the augmented data.
We compare our method with state-of-the-art (SOTA) methods using the class-conditional BigGAN and unconditional StyleGAN2 architectures.
arXiv Detail & Related papers (2022-05-31T10:35:55Z) - Learning Representational Invariances for Data-Efficient Action
Recognition [52.23716087656834]
We show that our data augmentation strategy leads to promising performance on the Kinetics-100, UCF-101, and HMDB-51 datasets.
We also validate our data augmentation strategy in the fully supervised setting and demonstrate improved performance.
arXiv Detail & Related papers (2021-03-30T17:59:49Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.