Empowering Graph Invariance Learning with Deep Spurious Infomax
- URL: http://arxiv.org/abs/2407.11083v1
- Date: Sat, 13 Jul 2024 14:18:47 GMT
- Title: Empowering Graph Invariance Learning with Deep Spurious Infomax
- Authors: Tianjun Yao, Yongqiang Chen, Zhenhao Chen, Kai Hu, Zhiqiang Shen, Kun Zhang,
- Abstract summary: We introduce a novel graph invariance learning paradigm, which induces a robust and general inductive bias.
EQuAD shows stable and enhanced performance across different degrees of bias in synthetic datasets and challenging real-world datasets up to $31.76%$.
- Score: 27.53568333416706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, there has been a surge of interest in developing graph neural networks that utilize the invariance principle on graphs to generalize the out-of-distribution (OOD) data. Due to the limited knowledge about OOD data, existing approaches often pose assumptions about the correlation strengths of the underlying spurious features and the target labels. However, this prior is often unavailable and will change arbitrarily in the real-world scenarios, which may lead to severe failures of the existing graph invariance learning methods. To bridge this gap, we introduce a novel graph invariance learning paradigm, which induces a robust and general inductive bias. The paradigm is built upon the observation that the infomax principle encourages learning spurious features regardless of spurious correlation strengths. We further propose the EQuAD framework that realizes this learning paradigm and employs tailored learning objectives that provably elicit invariant features by disentangling them from the spurious features learned through infomax. Notably, EQuAD shows stable and enhanced performance across different degrees of bias in synthetic datasets and challenging real-world datasets up to $31.76\%$. Our code is available at \url{https://github.com/tianyao-aka/EQuAD}.
Related papers
- A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
We provide an up-to-date and forward-looking review of deep graph learning under distribution shifts.
Specifically, we cover three primary scenarios: graph OOD generalization, training-time graph OOD adaptation, and test-time graph OOD adaptation.
To provide a better understanding of the literature, we systematically categorize the existing models based on our proposed taxonomy.
arXiv Detail & Related papers (2024-10-25T02:39:56Z) - Leveraging Variation Theory in Counterfactual Data Augmentation for Optimized Active Learning [19.962212551963383]
Active Learning (AL) allows models to learn interactively from user feedback.
This paper introduces a counterfactual data augmentation approach to AL.
arXiv Detail & Related papers (2024-08-07T14:55:04Z) - Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization [9.116601683256317]
In this work, we propose a novel framework, called Invariant Graph Learning based on Information bottleneck theory (InfoIGL)
Specifically, InfoIGL introduces a redundancy filter to compress task-irrelevant information related to environmental factors.
Experiments on both synthetic and real-world datasets demonstrate that our method achieves state-of-the-art performance under OOD generalization.
arXiv Detail & Related papers (2024-08-03T07:38:04Z) - Imbalanced Graph-Level Anomaly Detection via Counterfactual Augmentation and Feature Learning [1.3756846638796]
We propose an imbalanced GLAD method via counterfactual augmentation and feature learning.
We apply the model to brain disease datasets, which can prove the capability of our work.
arXiv Detail & Related papers (2024-07-13T13:40:06Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
We introduce a conceptually simple yet principled approach for training robust graph neural networks (GNNs) under node-level distribution shifts.
Our method resorts to a new learning objective derived from causal inference that coordinates an environment estimator and a mixture-of-expert GNN predictor.
Our model can effectively enhance generalization with various types of distribution shifts and yield up to 27.4% accuracy improvement over state-of-the-arts on graph OOD generalization benchmarks.
arXiv Detail & Related papers (2024-02-18T07:49:22Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF) is a model-agnostic unlearning method that can efficiently and accurately estimate parameter changes in response to a $epsilon$-mass perturbation in deleted data.
We conduct extensive experiments on four representative GNN models and three benchmark datasets to justify GIF's superiority in terms of unlearning efficacy, model utility, and unlearning efficiency.
arXiv Detail & Related papers (2023-04-06T03:02:54Z) - Unleashing the Power of Graph Data Augmentation on Covariate
Distribution Shift [50.98086766507025]
We propose a simple-yet-effective data augmentation strategy, Adversarial Invariant Augmentation (AIA)
AIA aims to extrapolate and generate new environments, while concurrently preserving the original stable features during the augmentation process.
arXiv Detail & Related papers (2022-11-05T07:55:55Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Deconfounded Training for Graph Neural Networks [98.06386851685645]
We present a new paradigm of decon training (DTP) that better mitigates the confounding effect and latches on the critical information.
Specifically, we adopt the attention modules to disentangle the critical subgraph and trivial subgraph.
It allows GNNs to capture a more reliable subgraph whose relation with the label is robust across different distributions.
arXiv Detail & Related papers (2021-12-30T15:22:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.