Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices
- URL: http://arxiv.org/abs/2403.12503v1
- Date: Tue, 19 Mar 2024 07:10:58 GMT
- Title: Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices
- Authors: Sara Abdali, Richard Anarfi, CJ Barberan, Jia He,
- Abstract summary: Large language models (LLMs) have significantly transformed the landscape of Natural Language Processing (NLP)
This research paper thoroughly investigates security and privacy concerns related to LLMs from five thematic perspectives.
The paper recommends promising avenues for future research to enhance the security and risk management of LLMs.
- Score: 4.927763944523323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have significantly transformed the landscape of Natural Language Processing (NLP). Their impact extends across a diverse spectrum of tasks, revolutionizing how we approach language understanding and generations. Nevertheless, alongside their remarkable utility, LLMs introduce critical security and risk considerations. These challenges warrant careful examination to ensure responsible deployment and safeguard against potential vulnerabilities. This research paper thoroughly investigates security and privacy concerns related to LLMs from five thematic perspectives: security and privacy concerns, vulnerabilities against adversarial attacks, potential harms caused by misuses of LLMs, mitigation strategies to address these challenges while identifying limitations of current strategies. Lastly, the paper recommends promising avenues for future research to enhance the security and risk management of LLMs.
Related papers
- Multimodal Situational Safety [73.63981779844916]
We present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety.
For an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context.
We develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs.
arXiv Detail & Related papers (2024-10-08T16:16:07Z) - Can LLMs be Fooled? Investigating Vulnerabilities in LLMs [4.927763944523323]
The advent of Large Language Models (LLMs) has garnered significant popularity and wielded immense power across various domains within Natural Language Processing (NLP)
This paper will synthesize the findings from each vulnerability section and propose new directions of research and development.
By understanding the focal points of current vulnerabilities, we can better anticipate and mitigate future risks.
arXiv Detail & Related papers (2024-07-30T04:08:00Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - Unique Security and Privacy Threats of Large Language Model: A Comprehensive Survey [46.19229410404056]
Large language models (LLMs) have made remarkable advancements in natural language processing.
These models are trained on vast datasets to exhibit powerful language understanding and generation capabilities.
Privacy and security issues have been revealed throughout their life cycle.
arXiv Detail & Related papers (2024-06-12T07:55:32Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines.
While their capabilities are promising, these agents also introduce novel vulnerabilities that demand careful consideration for safety.
This paper conducts a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures.
arXiv Detail & Related papers (2024-02-06T18:54:07Z) - Security and Privacy Challenges of Large Language Models: A Survey [2.9480813253164535]
Large Language Models (LLMs) have demonstrated extraordinary capabilities and contributed to multiple fields, such as generating and summarizing text, language translation, and question-answering.
These models are also vulnerable to security and privacy attacks, such as jailbreaking attacks, data poisoning attacks, and Personally Identifiable Information (PII) leakage attacks.
This survey provides a thorough review of the security and privacy challenges of LLMs for both training data and users, along with the application-based risks in various domains, such as transportation, education, and healthcare.
arXiv Detail & Related papers (2024-01-30T04:00:54Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - Use of LLMs for Illicit Purposes: Threats, Prevention Measures, and
Vulnerabilities [14.684194175806203]
Large language models (LLMs) can be misused for fraud, impersonation, and the generation of malware.
We present a taxonomy describing the relationship between threats caused by the generative capabilities of LLMs, prevention measures intended to address such threats, and vulnerabilities arising from imperfect prevention measures.
arXiv Detail & Related papers (2023-08-24T14:45:50Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.