Confidence Self-Calibration for Multi-Label Class-Incremental Learning
- URL: http://arxiv.org/abs/2403.12559v2
- Date: Mon, 12 Aug 2024 08:37:24 GMT
- Title: Confidence Self-Calibration for Multi-Label Class-Incremental Learning
- Authors: Kaile Du, Yifan Zhou, Fan Lyu, Yuyang Li, Chen Lu, Guangcan Liu,
- Abstract summary: Partial label challenge in Multi-Label Class-Incremental Learning (MLCIL) arises when only the new classes are labeled during training.
This issue leads to a proliferation of false-positive errors due to erroneously high confidence multi-label predictions.
We propose a Confidence Self-Calibration (CSC) approach to refine multi-label confidence calibration in MLCIL.
- Score: 21.104984143597882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The partial label challenge in Multi-Label Class-Incremental Learning (MLCIL) arises when only the new classes are labeled during training, while past and future labels remain unavailable. This issue leads to a proliferation of false-positive errors due to erroneously high confidence multi-label predictions, exacerbating catastrophic forgetting within the disjoint label space. In this paper, we aim to refine multi-label confidence calibration in MLCIL and propose a Confidence Self-Calibration (CSC) approach. Firstly, for label relationship calibration, we introduce a class-incremental graph convolutional network that bridges the isolated label spaces by constructing learnable, dynamically extended label relationship graph. Then, for confidence calibration, we present a max-entropy regularization for each multi-label increment, facilitating confidence self-calibration through the penalization of over-confident output distributions. Our approach attains new state-of-the-art results in MLCIL tasks on both MS-COCO and PASCAL VOC datasets, with the calibration of label confidences confirmed through our methodology.
Related papers
- Rebalancing Multi-Label Class-Incremental Learning [17.921329790170265]
We propose a Rebalance framework for both the Loss and Label levels (RebLL)
AKD is proposed to rebalance at the loss level by emphasizing the negative label learning in classification loss.
OR is designed for label rebalance, which restores the original class distribution in memory by online relabeling the missing classes.
arXiv Detail & Related papers (2024-08-22T07:04:22Z) - Dynamic Correlation Learning and Regularization for Multi-Label Confidence Calibration [60.95748658638956]
This paper introduces the Multi-Label Confidence task, aiming to provide well-calibrated confidence scores in multi-label scenarios.
Existing single-label calibration methods fail to account for category correlations, which are crucial for addressing semantic confusion.
We propose the Dynamic Correlation Learning and Regularization algorithm, which leverages multi-grained semantic correlations to better model semantic confusion.
arXiv Detail & Related papers (2024-07-09T13:26:21Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - Adversary-Aware Partial label learning with Label distillation [47.18584755798137]
We present Ad-Aware Partial Label Learning and introduce the $textitrival$, a set of noisy labels, to the collection of candidate labels for each instance.
Our method achieves promising results on the CIFAR10, CIFAR100 and CUB200 datasets.
arXiv Detail & Related papers (2023-04-02T10:18:30Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Transductive CLIP with Class-Conditional Contrastive Learning [68.51078382124331]
We propose Transductive CLIP, a novel framework for learning a classification network with noisy labels from scratch.
A class-conditional contrastive learning mechanism is proposed to mitigate the reliance on pseudo labels.
ensemble labels is adopted as a pseudo label updating strategy to stabilize the training of deep neural networks with noisy labels.
arXiv Detail & Related papers (2022-06-13T14:04:57Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
We investigate single-positive multi-label learning (SPMLL) where each example is annotated with only one relevant label.
A novel method named proposed, i.e., Single-positive MultI-label learning with Label Enhancement, is proposed.
Experiments on benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-06-01T14:26:30Z) - Enhancing Label Correlation Feedback in Multi-Label Text Classification
via Multi-Task Learning [6.1538971100140145]
We introduce a novel approach with multi-task learning to enhance label correlation feedback.
We propose two auxiliary label co-occurrence prediction tasks to enhance label correlation learning.
arXiv Detail & Related papers (2021-06-06T12:26:14Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation.
We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models.
We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process.
arXiv Detail & Related papers (2021-01-15T23:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.