Re-identification from histopathology images
- URL: http://arxiv.org/abs/2403.12816v1
- Date: Tue, 19 Mar 2024 15:15:19 GMT
- Title: Re-identification from histopathology images
- Authors: Jonathan Ganz, Jonas Ammeling, Samir Jabari, Katharina Breininger, Marc Aubreville,
- Abstract summary: This study demonstrates that even relatively simple deep learning algorithms can re-identify patients in large histopathology datasets with substantial accuracy.
Based on our findings, we formulated a risk assessment scheme to estimate the risk to the patient's privacy prior to publication.
- Score: 0.4154350202907906
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In numerous studies, deep learning algorithms have proven their potential for the analysis of histopathology images, for example, for revealing the subtypes of tumors or the primary origin of metastases. These models require large datasets for training, which must be anonymized to prevent possible patient identity leaks. This study demonstrates that even relatively simple deep learning algorithms can re-identify patients in large histopathology datasets with substantial accuracy. We evaluated our algorithms on two TCIA datasets including lung squamous cell carcinoma (LSCC) and lung adenocarcinoma (LUAD). We also demonstrate the algorithm's performance on an in-house dataset of meningioma tissue. We predicted the source patient of a slide with F1 scores of 50.16 % and 52.30 % on the LSCC and LUAD datasets, respectively, and with 62.31 % on our meningioma dataset. Based on our findings, we formulated a risk assessment scheme to estimate the risk to the patient's privacy prior to publication.
Related papers
- RCdpia: A Renal Carcinoma Digital Pathology Image Annotation dataset based on pathologists [14.79279940958727]
We have compiled the TCGA digital pathological dataset with independent labeling of tumor regions and adjacent areas (RCdpia)
This dataset is now publicly accessible at http://39.171.241.18:8888/RCdpia/.
arXiv Detail & Related papers (2024-03-17T13:23:25Z) - Evaluating LeNet Algorithms in Classification Lung Cancer from
Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases [0.0]
LeNet, a deep learning model, is used in this study to detect lung tumors.
The proposed system was evaluated on Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases datasets.
arXiv Detail & Related papers (2023-05-19T19:23:08Z) - Risk Assessment of Lymph Node Metastases in Endometrial Cancer Patients:
A Causal Approach [1.8933952173153485]
We introduce a causal discovery algorithm for causal Bayesian networks based on bootstrap resampling.
We discuss the strengths and limitations of our findings in light of the presence of missing data that may be missing-not-at-random.
arXiv Detail & Related papers (2023-05-17T08:33:32Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
This study included subjects (1832 subjects, 3276 knees) from the baseline of the MOST study.
PF joint regions-of-interest were identified using an automated landmark detection tool (BoneFinder) on lateral knee X-rays.
Risk factors included age, sex, BMI and WOMAC score, and the radiographic osteoarthritis stage of the tibiofemoral joint (KL score)
arXiv Detail & Related papers (2023-05-10T06:43:33Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Validation and Optimization of Multi-Organ Segmentation on Clinical
Imaging Archives [7.036733782879497]
A 2015 MICCAI challenge spurred substantial innovation in multi-organ abdominal CT segmentation.
Recent innovations in deep methods have driven performance toward levels for which clinical translation is appealing.
Cross-validation on open datasets presents the risk of indirect knowledge contamination and could result in circular reasoning.
arXiv Detail & Related papers (2020-02-10T21:49:42Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.