Primal Methods for Variational Inequality Problems with Functional Constraints
- URL: http://arxiv.org/abs/2403.12859v1
- Date: Tue, 19 Mar 2024 16:03:03 GMT
- Title: Primal Methods for Variational Inequality Problems with Functional Constraints
- Authors: Liang Zhang, Niao He, Michael Muehlebach,
- Abstract summary: We propose a primal method, termed Constrained Gradient Method (CGM), for addressing functional constrained variational inequality problems.
We establish a non-asymptotic convergence analysis of the algorithm for variational inequality problems with monotone operators under smooth constraints.
Our algorithms match the complexity of projection-based methods in terms of operator queries for both monotone and strongly monotone settings.
- Score: 25.261426717550293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constrained variational inequality problems are recognized for their broad applications across various fields including machine learning and operations research. First-order methods have emerged as the standard approach for solving these problems due to their simplicity and scalability. However, they typically rely on projection or linear minimization oracles to navigate the feasible set, which becomes computationally expensive in practical scenarios featuring multiple functional constraints. Existing efforts to tackle such functional constrained variational inequality problems have centered on primal-dual algorithms grounded in the Lagrangian function. These algorithms along with their theoretical analysis often require the existence and prior knowledge of the optimal Lagrange multipliers. In this work, we propose a simple primal method, termed Constrained Gradient Method (CGM), for addressing functional constrained variational inequality problems, without necessitating any information on the optimal Lagrange multipliers. We establish a non-asymptotic convergence analysis of the algorithm for variational inequality problems with monotone operators under smooth constraints. Remarkably, our algorithms match the complexity of projection-based methods in terms of operator queries for both monotone and strongly monotone settings, while utilizing significantly cheaper oracles based on quadratic programming. Furthermore, we provide several numerical examples to evaluate the efficacy of our algorithms.
Related papers
- Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints [9.301728976515255]
This article provides new practical and theoretical developments for the landing algorithm.
First, the method is extended to the Stiefel manifold.
We also consider variance reduction algorithms when the cost function is an average of many functions.
arXiv Detail & Related papers (2023-03-29T07:36:54Z) - SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum
Cocoercive Variational Inequalities [137.6408511310322]
We consider the problem of finite-sum cocoercive variational inequalities.
For strongly monotone problems it is possible to achieve linear convergence to a solution using this method.
arXiv Detail & Related papers (2022-10-12T08:04:48Z) - A Single-Loop Gradient Descent and Perturbed Ascent Algorithm for
Nonconvex Functional Constrained Optimization [27.07082875330508]
Non constrained inequality problems can be used to model a number machine learning problems, such as multi-class Neyman oracle.
Under such a mild condition of regularity it is difficult to balance reduction alternating value loss and reduction constraint violation.
In this paper, we propose a novel primal-dual inequality constrained problems algorithm.
arXiv Detail & Related papers (2022-07-12T16:30:34Z) - First-Order Algorithms for Nonlinear Generalized Nash Equilibrium
Problems [88.58409977434269]
We consider the problem of computing an equilibrium in a class of nonlinear generalized Nash equilibrium problems (NGNEPs)
Our contribution is to provide two simple first-order algorithmic frameworks based on the quadratic penalty method and the augmented Lagrangian method.
We provide nonasymptotic theoretical guarantees for these algorithms.
arXiv Detail & Related papers (2022-04-07T00:11:05Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained
Optimization [13.170519806372075]
Problems of convex optimization with two sets of constraints arise frequently in the context of semidefinite programming.
Since projection onto the first set of constraints is difficult, it becomes necessary to explore projection-free algorithms.
The efficacy of the proposed algorithms is tested on relevant applications of sparse matrix estimation, clustering via semidefinite relaxation, and uniform sparsest cut problem.
arXiv Detail & Related papers (2021-07-14T08:01:30Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - The limits of min-max optimization algorithms: convergence to spurious
non-critical sets [82.74514886461257]
min-max optimization algorithms encounter problems far greater because of the existence of periodic cycles and similar phenomena.
We show that there exist algorithms that do not attract any points of the problem.
We illustrate such challenges in simple to almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost
arXiv Detail & Related papers (2020-06-16T10:49:27Z) - Inexact and Stochastic Generalized Conditional Gradient with Augmented
Lagrangian and Proximal Step [2.0196229393131726]
We analyze inexact and versions of the CGALP algorithm developed in the authors' previous paper.
This allows one to compute some gradients, terms, and/or linear minimization oracles in an inexact fashion.
We show convergence of the Lagrangian to an optimum and feasibility of the affine constraint.
arXiv Detail & Related papers (2020-05-11T14:52:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.