論文の概要: Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints
- arxiv url: http://arxiv.org/abs/2403.12873v1
- Date: Tue, 19 Mar 2024 16:17:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:24:34.155279
- Title: Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints
- Title(参考訳): データ伝送制約下における短期太陽放射予測
- Authors: Joshua Edward Hammond, Ricardo A. Lara Orozco, Michael Baldea, Brian A. Korgel,
- Abstract要約: 太陽放射の短期予測のためのデータ並列機械学習モデルについて報告する。
平均絶対誤差は74.34$W/m2$であり、ベースラインは134.35$W/m2$である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report a data-parsimonious machine learning model for short-term forecasting of solar irradiance. The model inputs include sky camera images that are reduced to scalar features to meet data transmission constraints. The output irradiance values are transformed to focus on unknown short-term dynamics. Inspired by control theory, a noise input is used to reflect unmeasured variables and is shown to improve model predictions, often considerably. Five years of data from the NREL Solar Radiation Research Laboratory were used to create three rolling train-validate sets and determine the best representations for time, the optimal span of input measurements, and the most impactful model input data (features). For the chosen test data, the model achieves a mean absolute error of 74.34 $W/m^2$ compared to a baseline 134.35 $W/m^2$ using the persistence of cloudiness model.
- Abstract(参考訳): 太陽放射の短期予測のためのデータ並列機械学習モデルについて報告する。
モデル入力には、データ送信制約を満たすスカラー特徴に縮小されたスカイカメライメージが含まれる。
出力照射値は、未知の短期力学に焦点を合わせるように変換される。
制御理論にインスパイアされたノイズ入力は、計測されていない変数を反映するために使用され、モデル予測を改善することが示される。
NREL太陽放射研究所(英語版)から5年間のデータを用いて、3つの鉄道車両検証セットを作成し、最適な時間表現、最適な入力測定範囲、最もインパクトのあるモデル入力データ(機能)を判定した。
選択されたテストデータに対して、平均絶対誤差は74.34 $W/m^2$であり、ベースライン134.35 $W/m^2$は、雲の持続性を用いて達成される。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をトレーニングデータセットを超える微細な時間スケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
また、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークも導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Solar Radiation Prediction in the UTEQ based on Machine Learning Models [0.0]
データは、ケヴェド工科大学中央キャンパス(UTEQ)のピラノメーターから得られた。
評価指標としてMean Squared Error(MSE)、Root Mean Squared Error(RMSE)、Mean Absolute Error(MAE)、決定係数(R2$)を比較した。
この研究は、グラディエント・ブースティング・レグレッショナーが優れた性能を示し、Random Forest Regressorがそれに続いたことを明らかにした。
論文 参考訳(メタデータ) (2023-12-29T15:54:45Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
本研究では,事前学習損失,教師付きデータ量,拡張データ量が教師付きLDMの推論性能に与える影響について検討する。
複数のモデルからの拒絶サンプルは、LLaMA-7BをGSM8Kの49.3%の精度に押し上げ、監督された微調整(SFT)の精度を35.9%上回る結果となった。
論文 参考訳(メタデータ) (2023-08-03T15:34:01Z) - Model-Agnostic Hybrid Numerical Weather Prediction and Machine Learning
Paradigm for Solar Forecasting in the Tropics [0.0]
数値天気予報(NWP)と機械学習(ML)の手法は、太陽の予測に人気がある。
しかし、NWPモデルは複数の物理パラメータ化が可能であり、サイト固有のNWP最適化が必要である。
地域NWPモデルが、パラメータ化の可能なグローバル気候モデルで使用される場合、これはさらに複雑である。
本研究では, 4つの放射線モデルに対して, 代替手法を提案し, 評価した。
論文 参考訳(メタデータ) (2021-12-09T14:49:02Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
我々は,18の事前学習トランスフォーマーモデルから予測した29のデータセットを個別のテスト例で評価した。
Quoref、HellaSwag、MC-TACOは最先端のモデルを区別するのに最適である。
また、QAMRやSQuAD2.0のようなQAデータセットに使用されるスパン選択タスク形式は、強いモデルと弱いモデルとの差別化に有効である。
論文 参考訳(メタデータ) (2021-06-01T22:33:53Z) - Benchmarking of Deep Learning Irradiance Forecasting Models from Sky
Images -- an in-depth Analysis [0.0]
我々は4つのよく使われるディープラーニングアーキテクチャを訓練し、半球空画像のシーケンスから太陽の照度を予測する。
その結果、時間的側面の符号化は予測を大幅に改善し、10分予測スキルはテスト年度で20.4%に達した。
一般的なセットアップでは、ディープラーニングモデルは"非常にスマートな永続化モデル"のように振る舞う傾向があり、永続モデルと時間的に一致し、最もペナルティの高いエラーを軽減します。
論文 参考訳(メタデータ) (2021-02-01T09:31:14Z) - Robust Data-Driven Error Compensation for a Battery Model [0.0]
今日の大量のバッテリデータは、より正確で信頼性の高いシミュレーションにはまだ使われていません。
データ駆動型エラーモデルを導入し、既存の物理的動機付けモデルを強化します。
ニューラルネットワークは、既存の動的エラーを補償し、基礎となるデータの記述に基づいてさらに制限される。
論文 参考訳(メタデータ) (2020-12-31T16:11:36Z) - Computer Model Calibration with Time Series Data using Deep Learning and
Quantile Regression [1.6758573326215689]
既存の標準校正フレームワークは、モデル出力と観測データが高次元依存データである場合、推論の問題に悩まされる。
モデル出力と入力パラメータの逆関係を直接エミュレートする長期記憶層を持つディープニューラルネットワーク(DNN)に基づく新しいキャリブレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-29T22:18:41Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。