mPLUG-DocOwl 1.5: Unified Structure Learning for OCR-free Document Understanding
- URL: http://arxiv.org/abs/2403.12895v1
- Date: Tue, 19 Mar 2024 16:48:40 GMT
- Title: mPLUG-DocOwl 1.5: Unified Structure Learning for OCR-free Document Understanding
- Authors: Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang Zhang, Bo Zhang, Chen Li, Ji Zhang, Qin Jin, Fei Huang, Jingren Zhou,
- Abstract summary: We propose the Unified Structure Learning to boost the performance of MLLMs.
Our model DocOwl 1.5 achieves state-of-the-art performance on 10 visual document understanding benchmarks.
- Score: 100.17063271791528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structure information is critical for understanding the semantics of text-rich images, such as documents, tables, and charts. Existing Multimodal Large Language Models (MLLMs) for Visual Document Understanding are equipped with text recognition ability but lack general structure understanding abilities for text-rich document images. In this work, we emphasize the importance of structure information in Visual Document Understanding and propose the Unified Structure Learning to boost the performance of MLLMs. Our Unified Structure Learning comprises structure-aware parsing tasks and multi-grained text localization tasks across 5 domains: document, webpage, table, chart, and natural image. To better encode structure information, we design a simple and effective vision-to-text module H-Reducer, which can not only maintain the layout information but also reduce the length of visual features by merging horizontal adjacent patches through convolution, enabling the LLM to understand high-resolution images more efficiently. Furthermore, by constructing structure-aware text sequences and multi-grained pairs of texts and bounding boxes for publicly available text-rich images, we build a comprehensive training set DocStruct4M to support structure learning. Finally, we construct a small but high-quality reasoning tuning dataset DocReason25K to trigger the detailed explanation ability in the document domain. Our model DocOwl 1.5 achieves state-of-the-art performance on 10 visual document understanding benchmarks, improving the SOTA performance of MLLMs with a 7B LLM by more than 10 points in 5/10 benchmarks. Our codes, models, and datasets are publicly available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/DocOwl1.5.
Related papers
- ComAlign: Compositional Alignment in Vision-Language Models [2.3250871476216814]
We introduce Compositional Alignment (ComAlign) to discover more exact correspondence of text and image components.
Our methodology emphasizes that the compositional structure extracted from the text modality must also be retained in the image modality.
We train a lightweight network lying on top of existing visual and language encoders using a small dataset.
arXiv Detail & Related papers (2024-09-12T16:46:41Z) - mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding [103.05835688963947]
We propose a High-resolution DocCompressor module to compress each high-resolution document image into 324 tokens.
DocOwl2 sets a new state-of-the-art across multi-page document understanding benchmarks and reduces first token latency by more than 50%.
Compared to single-image MLLMs trained on similar data, our DocOwl2 achieves comparable single-page understanding performance with less than 20% of the visual tokens.
arXiv Detail & Related papers (2024-09-05T11:09:00Z) - SRFUND: A Multi-Granularity Hierarchical Structure Reconstruction Benchmark in Form Understanding [55.48936731641802]
We present the SRFUND, a hierarchically structured multi-task form understanding benchmark.
SRFUND provides refined annotations on top of the original FUNSD and XFUND datasets.
The dataset includes eight languages including English, Chinese, Japanese, German, French, Spanish, Italian, and Portuguese.
arXiv Detail & Related papers (2024-06-13T02:35:55Z) - LayoutLLM: Large Language Model Instruction Tuning for Visually Rich Document Understanding [0.0]
This paper proposes LayoutLLM, a more flexible document analysis method for understanding imaged documents.
Existing methods have been developed to enhance document comprehension by incorporating pre-training awareness of images, text, and layout structure.
Our experiments demonstrate improvement over the baseline model in various document analysis tasks.
arXiv Detail & Related papers (2024-03-21T09:25:24Z) - Towards Improving Document Understanding: An Exploration on
Text-Grounding via MLLMs [96.54224331778195]
We present a text-grounding document understanding model, termed TGDoc, which enhances MLLMs with the ability to discern the spatial positioning of text within images.
We formulate instruction tuning tasks including text detection, recognition, and spotting to facilitate the cohesive alignment between the visual encoder and large language model.
Our method achieves state-of-the-art performance across multiple text-rich benchmarks, validating the effectiveness of our method.
arXiv Detail & Related papers (2023-11-22T06:46:37Z) - UReader: Universal OCR-free Visually-situated Language Understanding
with Multimodal Large Language Model [108.85584502396182]
We propose UReader, a first exploration of universal OCR-free visually-situated language understanding based on the Multimodal Large Language Model (MLLM)
By leveraging the shallow text recognition ability of the MLLM, we only finetuned 1.2% parameters.
Our single model achieves state-of-the-art ocr-free performance in 8 out of 10 visually-situated language understanding tasks.
arXiv Detail & Related papers (2023-10-08T11:33:09Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
Document understanding refers to automatically extract, analyze and comprehend information from digital documents, such as a web page.
Existing Multi-model Large Language Models (MLLMs) have demonstrated promising zero-shot capabilities in shallow OCR-free text recognition.
arXiv Detail & Related papers (2023-07-04T11:28:07Z) - StrucTexT: Structured Text Understanding with Multi-Modal Transformers [29.540122964399046]
Structured text understanding on Visually Rich Documents (VRDs) is a crucial part of Document Intelligence.
This paper proposes a unified framework named StrucTexT, which is flexible and effective for handling both sub-tasks.
We evaluate our method for structured text understanding at segment-level and token-level and show it outperforms the state-of-the-art counterparts.
arXiv Detail & Related papers (2021-08-06T02:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.