ComAlign: Compositional Alignment in Vision-Language Models
- URL: http://arxiv.org/abs/2409.08206v1
- Date: Thu, 12 Sep 2024 16:46:41 GMT
- Title: ComAlign: Compositional Alignment in Vision-Language Models
- Authors: Ali Abdollah, Amirmohammad Izadi, Armin Saghafian, Reza Vahidimajd, Mohammad Mozafari, Amirreza Mirzaei, Mohammadmahdi Samiei, Mahdieh Soleymani Baghshah,
- Abstract summary: We introduce Compositional Alignment (ComAlign) to discover more exact correspondence of text and image components.
Our methodology emphasizes that the compositional structure extracted from the text modality must also be retained in the image modality.
We train a lightweight network lying on top of existing visual and language encoders using a small dataset.
- Score: 2.3250871476216814
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Vision-language models (VLMs) like CLIP have showcased a remarkable ability to extract transferable features for downstream tasks. Nonetheless, the training process of these models is usually based on a coarse-grained contrastive loss between the global embedding of images and texts which may lose the compositional structure of these modalities. Many recent studies have shown VLMs lack compositional understandings like attribute binding and identifying object relationships. Although some recent methods have tried to achieve finer-level alignments, they either are not based on extracting meaningful components of proper granularity or don't properly utilize the modalities' correspondence (especially in image-text pairs with more ingredients). Addressing these limitations, we introduce Compositional Alignment (ComAlign), a fine-grained approach to discover more exact correspondence of text and image components using only the weak supervision in the form of image-text pairs. Our methodology emphasizes that the compositional structure (including entities and relations) extracted from the text modality must also be retained in the image modality. To enforce correspondence of fine-grained concepts in image and text modalities, we train a lightweight network lying on top of existing visual and language encoders using a small dataset. The network is trained to align nodes and edges of the structure across the modalities. Experimental results on various VLMs and datasets demonstrate significant improvements in retrieval and compositional benchmarks, affirming the effectiveness of our plugin model.
Related papers
- FINEMATCH: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction [66.98008357232428]
We propose FineMatch, a new aspect-based fine-grained text and image matching benchmark.
FineMatch focuses on text and image mismatch detection and correction.
We show that models trained on FineMatch demonstrate enhanced proficiency in detecting fine-grained text and image mismatches.
arXiv Detail & Related papers (2024-04-23T03:42:14Z) - Improving Cross-modal Alignment with Synthetic Pairs for Text-only Image
Captioning [13.357749288588039]
Previous works leverage the CLIP's cross-modal association ability for image captioning, relying solely on textual information under unsupervised settings.
This paper proposes a novel method to address these issues by incorporating synthetic image-text pairs.
A pre-trained text-to-image model is deployed to obtain images that correspond to textual data, and the pseudo features of generated images are optimized toward the real ones in the CLIP embedding space.
arXiv Detail & Related papers (2023-12-14T12:39:29Z) - Contrasting Intra-Modal and Ranking Cross-Modal Hard Negatives to Enhance Visio-Linguistic Compositional Understanding [6.798129852396113]
We introduce a simple and effective method to improve compositional reasoning in Vision-Language Models (VLMs)
Our method better leverages available datasets by refining and expanding the standard image-text contrastive learning framework.
When integrated with CLIP, our technique yields notable improvement over state-of-the-art baselines.
arXiv Detail & Related papers (2023-06-15T03:26:28Z) - Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for
Improved Vision-Language Compositionality [50.48859793121308]
Contrastively trained vision-language models have achieved remarkable progress in vision and language representation learning.
Recent research has highlighted severe limitations in their ability to perform compositional reasoning over objects, attributes, and relations.
arXiv Detail & Related papers (2023-05-23T08:28:38Z) - ComCLIP: Training-Free Compositional Image and Text Matching [19.373706257771673]
Contrastive Language-Image Pretraining has demonstrated great zero-shot performance for matching images and text.
We propose a novel textbftextittraining-free compositional CLIP model (ComCLIP)
ComCLIP disentangles input images into subjects, objects, and action sub-images and composes CLIP's vision encoder and text encoder to perform evolving matching over compositional text embedding and sub-image embeddings.
arXiv Detail & Related papers (2022-11-25T01:37:48Z) - ContextCLIP: Contextual Alignment of Image-Text pairs on CLIP visual
representations [4.588028371034406]
We propose ContextCLIP, a contextual and contrastive learning framework for the contextual alignment of image-text pairs.
Our framework was observed to improve the image-text alignment by aligning text and image representations contextually in the joint embedding space.
ContextCLIP showed good qualitative performance for text-to-image retrieval tasks and enhanced classification accuracy.
arXiv Detail & Related papers (2022-11-14T05:17:51Z) - BOSS: Bottom-up Cross-modal Semantic Composition with Hybrid
Counterfactual Training for Robust Content-based Image Retrieval [61.803481264081036]
Content-Based Image Retrieval (CIR) aims to search for a target image by concurrently comprehending the composition of an example image and a complementary text.
We tackle this task by a novel underlinetextbfBottom-up crunderlinetextbfOss-modal underlinetextbfSemantic compounderlinetextbfSition (textbfBOSS) with Hybrid Counterfactual Training framework.
arXiv Detail & Related papers (2022-07-09T07:14:44Z) - Language Matters: A Weakly Supervised Pre-training Approach for Scene
Text Detection and Spotting [69.77701325270047]
This paper presents a weakly supervised pre-training method that can acquire effective scene text representations.
Our network consists of an image encoder and a character-aware text encoder that extract visual and textual features.
Experiments show that our pre-trained model improves F-score by +2.5% and +4.8% while transferring its weights to other text detection and spotting networks.
arXiv Detail & Related papers (2022-03-08T08:10:45Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.