論文の概要: Toward Sustainable GenAI using Generation Directives for Carbon-Friendly Large Language Model Inference
- arxiv url: http://arxiv.org/abs/2403.12900v1
- Date: Tue, 19 Mar 2024 16:53:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:24:34.123564
- Title: Toward Sustainable GenAI using Generation Directives for Carbon-Friendly Large Language Model Inference
- Title(参考訳): カーボンフレンドリーな大規模言語モデル推論のためのジェネレーションディレクティブを用いた持続可能なGenAIを目指して
- Authors: Baolin Li, Yankai Jiang, Vijay Gadepally, Devesh Tiwari,
- Abstract要約: 本稿では,ジェネレーティブ・Large Language Model (LLM) 推論サービスの炭素フットプリント削減を目的とした,革新的なフレームワークであるSproutを提案する。
提案手法は,生態系の持続可能性と高品質な生成結果の需要のバランスをとる。
Llama2およびグローバル電力グリッドデータを用いた実世界の評価において, 炭素排出量を40%以上削減できることを実証した。
- 参考スコア(独自算出の注目度): 8.567865555551911
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of Generative Artificial Intelligence (GenAI) across diverse sectors raises significant environmental concerns, notably the carbon emissions from their cloud and high performance computing (HPC) infrastructure. This paper presents Sprout, an innovative framework designed to address these concerns by reducing the carbon footprint of generative Large Language Model (LLM) inference services. Sprout leverages the innovative concept of "generation directives" to guide the autoregressive generation process, thereby enhancing carbon efficiency. Our proposed method meticulously balances the need for ecological sustainability with the demand for high-quality generation outcomes. Employing a directive optimizer for the strategic assignment of generation directives to user prompts and an original offline quality evaluator, Sprout demonstrates a significant reduction in carbon emissions by over 40% in real-world evaluations using the Llama2 LLM and global electricity grid data. This research marks a critical step toward aligning AI technology with sustainable practices, highlighting the potential for mitigating environmental impacts in the rapidly expanding domain of generative artificial intelligence.
- Abstract(参考訳): さまざまな分野にわたる生成人工知能(GenAI)の急速な進歩は、特にクラウドからの二酸化炭素排出量やハイパフォーマンスコンピューティング(HPC)のインフラなど、環境上の重要な懸念を提起する。
本稿では,生成型大規模言語モデル(LLM)推論サービスの炭素フットプリントを削減することで,これらの問題に対処する革新的なフレームワークであるSproutを提案する。
スプラウトは「世代指令」という革新的な概念を利用して自己回帰生成プロセスを導いており、それによって炭素効率が向上する。
提案手法は, 環境保全性の必要性と, 高品質な生産結果の需要とを慎重にバランスさせるものである。
ユーザプロンプトへのジェネレーションディレクティブの戦略的割り当てのためのディレクティブオプティマイザとオリジナルのオフライン品質評価器を用いて、Llama2 LLMとグローバル電力グリッドデータを用いた実世界の評価において、Sproutは炭素排出量を40%以上削減することを示した。
この研究は、AI技術を持続可能なプラクティスと整合させるための重要なステップであり、生成的人工知能の急速に拡大する領域における環境への影響を緩和する可能性を強調している。
関連論文リスト
- Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
ジェネレーティブAI(GAI)は、AIoT(Artificial Intelligence of Things)の二酸化炭素排出量を減らす大きな可能性を秘めている
本稿では, 炭素排出量削減のためのGAIの可能性について検討し, 低炭素AIoTのための新しいGAI対応ソリューションを提案する。
本稿では,Large Language Model (LLM) を利用したCO_2排出最適化フレームワークを提案し,このフレームワークにより,プラグ可能なLLMとRetrieval Augmented Generation (RAG) モジュールを設計する。
論文 参考訳(メタデータ) (2024-04-28T05:46:28Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
特に炭素フットプリントが高い大言語モデルのCO2排出量について検討した。
我々は, 二酸化炭素排出削減対策を提案することによって, 責任と持続性を有するLLMの育成を議論する。
論文 参考訳(メタデータ) (2024-04-01T15:01:45Z) - Recommendations for public action towards sustainable generative AI
systems [0.0]
本稿では,生成AIの環境フットプリントの構成要素について述べる。
これは、大規模な言語モデルのトレーニングに関連する大量のCO2排出量と水消費を強調します。
また, 環境負荷に影響を及ぼすモデルの特徴と要因についても検討した。
論文 参考訳(メタデータ) (2024-01-04T08:55:53Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Guiding AI-Generated Digital Content with Wireless Perception [69.51950037942518]
本稿では,AIGC(AIGC)と無線認識を統合し,デジタルコンテンツ制作の質を向上させる。
このフレームワークは、単語の正確な記述が難しいユーザの姿勢を読み取るために、新しいマルチスケール認識技術を採用し、それをスケルトン画像としてAIGCモデルに送信する。
生産プロセスはAIGCモデルの制約としてユーザの姿勢を強制するため、生成されたコンテンツはユーザの要求に適合する。
論文 参考訳(メタデータ) (2023-03-26T04:39:03Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
eco2AIでは、エネルギー消費の追跡と地域CO2排出量の正当性に重点を置いている。
モチベーションは、サステナブルAIとグリーンAI経路の両方で、AIベースの温室効果ガスの隔離サイクルの概念からもたらされる。
論文 参考訳(メタデータ) (2022-07-31T09:34:53Z) - Sustainable AI: Environmental Implications, Challenges and Opportunities [13.089123643565724]
我々は、産業規模の機械学習ユースケースにおけるモデル開発サイクルを調べることで、AIコンピューティングの炭素フットプリントを特徴づける。
ハードウェア・ソフトウェア設計と大規模最適化がAIのカーボンフットプリント全体の削減にどのように役立つのかを、エンドツーエンドで分析する。
論文 参考訳(メタデータ) (2021-10-30T23:36:10Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。