TexTile: A Differentiable Metric for Texture Tileability
- URL: http://arxiv.org/abs/2403.12961v1
- Date: Tue, 19 Mar 2024 17:59:09 GMT
- Title: TexTile: A Differentiable Metric for Texture Tileability
- Authors: Carlos Rodriguez-Pardo, Dan Casas, Elena Garces, Jorge Lopez-Moreno,
- Abstract summary: We introduce TexTile, a novel differentiable metric to quantify the degree upon which a texture image can bed with itself.
Existing methods for tileable texture synthesis focus on general texture quality, but lack explicit analysis of the intrinsic properties of a texture.
- Score: 10.684366243276198
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce TexTile, a novel differentiable metric to quantify the degree upon which a texture image can be concatenated with itself without introducing repeating artifacts (i.e., the tileability). Existing methods for tileable texture synthesis focus on general texture quality, but lack explicit analysis of the intrinsic repeatability properties of a texture. In contrast, our TexTile metric effectively evaluates the tileable properties of a texture, opening the door to more informed synthesis and analysis of tileable textures. Under the hood, TexTile is formulated as a binary classifier carefully built from a large dataset of textures of different styles, semantics, regularities, and human annotations.Key to our method is a set of architectural modifications to baseline pre-train image classifiers to overcome their shortcomings at measuring tileability, along with a custom data augmentation and training regime aimed at increasing robustness and accuracy. We demonstrate that TexTile can be plugged into different state-of-the-art texture synthesis methods, including diffusion-based strategies, and generate tileable textures while keeping or even improving the overall texture quality. Furthermore, we show that TexTile can objectively evaluate any tileable texture synthesis method, whereas the current mix of existing metrics produces uncorrelated scores which heavily hinders progress in the field.
Related papers
- RoCoTex: A Robust Method for Consistent Texture Synthesis with Diffusion Models [3.714901836138171]
We propose a robust text-to-texture method for generating consistent and seamless textures that are well aligned with the mesh.
Our method leverages state-of-the-art 2D diffusion models, including SDXL and multiple ControlNets, to capture structural features and intricate details in the generated textures.
arXiv Detail & Related papers (2024-09-30T06:29:50Z) - Infinite Texture: Text-guided High Resolution Diffusion Texture Synthesis [61.189479577198846]
We present Infinite Texture, a method for generating arbitrarily large texture images from a text prompt.
Our approach fine-tunes a diffusion model on a single texture, and learns to embed that statistical distribution in the output domain of the model.
At generation time, our fine-tuned diffusion model is used through a score aggregation strategy to generate output texture images of arbitrary resolution on a single GPU.
arXiv Detail & Related papers (2024-05-13T21:53:09Z) - GenesisTex: Adapting Image Denoising Diffusion to Texture Space [15.907134430301133]
GenesisTex is a novel method for synthesizing textures for 3D geometries from text descriptions.
We maintain a latent texture map for each viewpoint, which is updated with predicted noise on the rendering of the corresponding viewpoint.
Global consistency is achieved through the integration of style consistency mechanisms within the noise prediction network.
arXiv Detail & Related papers (2024-03-26T15:15:15Z) - TextureDreamer: Image-guided Texture Synthesis through Geometry-aware
Diffusion [64.49276500129092]
TextureDreamer is an image-guided texture synthesis method.
It can transfer relightable textures from a small number of input images to target 3D shapes across arbitrary categories.
arXiv Detail & Related papers (2024-01-17T18:55:49Z) - Generating Non-Stationary Textures using Self-Rectification [70.91414475376698]
This paper addresses the challenge of example-based non-stationary texture synthesis.
We introduce a novel twostep approach wherein users first modify a reference texture using standard image editing tools.
Our proposed method, termed "self-rectification", automatically refines this target into a coherent, seamless texture.
arXiv Detail & Related papers (2024-01-05T15:07:05Z) - SceneTex: High-Quality Texture Synthesis for Indoor Scenes via Diffusion
Priors [49.03627933561738]
SceneTex is a novel method for generating high-quality and style-consistent textures for indoor scenes using depth-to-image diffusion priors.
SceneTex enables various and accurate texture synthesis for 3D-FRONT scenes, demonstrating significant improvements in visual quality and prompt fidelity over the prior texture generation methods.
arXiv Detail & Related papers (2023-11-28T22:49:57Z) - SeamlessGAN: Self-Supervised Synthesis of Tileable Texture Maps [3.504542161036043]
We present SeamlessGAN, a method capable of automatically generating tileable texture maps from a single input exemplar.
In contrast to most existing methods, focused solely on solving the synthesis problem, our work tackles both problems, synthesis and tileability, simultaneously.
arXiv Detail & Related papers (2022-01-13T18:24:26Z) - Learning Statistical Texture for Semantic Segmentation [53.7443670431132]
We propose a novel Statistical Texture Learning Network (STLNet) for semantic segmentation.
For the first time, STLNet analyzes the distribution of low level information and efficiently utilizes them for the task.
Based on QCO, two modules are introduced: (1) Texture Enhance Module (TEM), to capture texture-related information and enhance the texture details; (2) Pyramid Texture Feature Extraction Module (PTFEM), to effectively extract the statistical texture features from multiple scales.
arXiv Detail & Related papers (2021-03-06T15:05:35Z) - Region-adaptive Texture Enhancement for Detailed Person Image Synthesis [86.69934638569815]
RATE-Net is a novel framework for synthesizing person images with sharp texture details.
The proposed framework leverages an additional texture enhancing module to extract appearance information from the source image.
Experiments conducted on DeepFashion benchmark dataset have demonstrated the superiority of our framework compared with existing networks.
arXiv Detail & Related papers (2020-05-26T02:33:21Z) - Co-occurrence Based Texture Synthesis [25.4878061402506]
We propose a fully convolutional generative adversarial network, conditioned locally on co-occurrence statistics, to generate arbitrarily large images.
We show that our solution offers a stable, intuitive and interpretable latent representation for texture synthesis.
arXiv Detail & Related papers (2020-05-17T08:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.