Towards Better Statistical Understanding of Watermarking LLMs
- URL: http://arxiv.org/abs/2403.13027v1
- Date: Tue, 19 Mar 2024 01:57:09 GMT
- Title: Towards Better Statistical Understanding of Watermarking LLMs
- Authors: Zhongze Cai, Shang Liu, Hanzhao Wang, Huaiyang Zhong, Xiaocheng Li,
- Abstract summary: In this paper, we study the problem of watermarking large language models (LLMs)
We consider the trade-off between model distortion and detection ability and it as a constrained optimization problem based on the green-red list of Kirchenbauer et al.
We develop an online dual gradient ascent watermarking algorithm in light of this optimization formulation and prove its optimality between model distortion and detection ability.
- Score: 7.68488211412916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of watermarking large language models (LLMs). We consider the trade-off between model distortion and detection ability and formulate it as a constrained optimization problem based on the green-red algorithm of Kirchenbauer et al. (2023a). We show that the optimal solution to the optimization problem enjoys a nice analytical property which provides a better understanding and inspires the algorithm design for the watermarking process. We develop an online dual gradient ascent watermarking algorithm in light of this optimization formulation and prove its asymptotic Pareto optimality between model distortion and detection ability. Such a result guarantees an averaged increased green list probability and henceforth detection ability explicitly (in contrast to previous results). Moreover, we provide a systematic discussion on the choice of the model distortion metrics for the watermarking problem. We justify our choice of KL divergence and present issues with the existing criteria of ``distortion-free'' and perplexity. Finally, we empirically evaluate our algorithms on extensive datasets against benchmark algorithms.
Related papers
- Universally Optimal Watermarking Schemes for LLMs: from Theory to Practice [35.319577498993354]
Large Language Models (LLMs) boosts human efficiency but also poses misuse risks.
We propose a novel theoretical framework for watermarking LLMs.
We jointly optimize both the watermarking scheme and detector to maximize detection performance.
arXiv Detail & Related papers (2024-10-03T18:28:10Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solving flow-based distributionally robust optimization (DRO) problems with Wasserstein uncertainty sets.
We aim to find continuous worst-case distribution (also called the Least Favorable Distribution, LFD) and sample from it.
We demonstrate its usage in adversarial learning, distributionally robust hypothesis testing, and a new mechanism for data-driven distribution perturbation differential privacy.
arXiv Detail & Related papers (2023-10-30T03:53:31Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
We propose an explicit solution to the COO problem, called Detail Enhanced Contrastive Loss (DECLoss)
DECLoss utilizes the clustering property of contrastive learning to directly reduce the variance of the potential high-resolution distribution.
We evaluate DECLoss on multiple super-resolution benchmarks and demonstrate that it improves the perceptual quality of PSNR-oriented models.
arXiv Detail & Related papers (2022-01-04T08:30:09Z) - Adaptive Importance Sampling for Finite-Sum Optimization and Sampling
with Decreasing Step-Sizes [4.355567556995855]
We propose Avare, a simple and efficient algorithm for adaptive importance sampling for finite-sum optimization and sampling with decreasing step-sizes.
Under standard technical conditions, we show that Avare achieves $mathcalO(T2/3)$ and $mathcalO(T5/6)$ dynamic regret for SGD and SGLD respectively when run with $mathcalO(T5/6)$ step sizes.
arXiv Detail & Related papers (2021-03-23T00:28:15Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification [0.0]
We present a novel adaptive optimization algorithm for black-box multi-objective optimization problems with binary constraints.
Our method is based on probabilistic regression and classification models, which act as a surrogate for the optimization goals.
We also present a novel ellipsoid truncation method to speed up the expected hypervolume calculation.
arXiv Detail & Related papers (2020-08-27T09:15:02Z) - Ensuring smoothly navigable approximation sets by Bezier curve
parameterizations in evolutionary bi-objective optimization -- applied to
brachytherapy treatment planning for prostate cancer [0.0]
We study the case of parameterizing approximation sets as smooth Bezier curves in decision space.
We show that high-quality approximation sets can be obtained with BezEA, sometimes even outperforming the domination- and UHV-based algorithms.
arXiv Detail & Related papers (2020-06-11T13:57:33Z) - Discovering Representations for Black-box Optimization [73.59962178534361]
We show that black-box optimization encodings can be automatically learned, rather than hand designed.
We show that learned representations make it possible to solve high-dimensional problems with orders of magnitude fewer evaluations than the standard MAP-Elites.
arXiv Detail & Related papers (2020-03-09T20:06:20Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.