Deep learning with noisy labels in medical prediction problems: a scoping review
- URL: http://arxiv.org/abs/2403.13111v1
- Date: Tue, 19 Mar 2024 19:24:00 GMT
- Title: Deep learning with noisy labels in medical prediction problems: a scoping review
- Authors: Yishu Wei, Yu Deng, Cong Sun, Mingquan Lin, Hongmei Jiang, Yifan Peng,
- Abstract summary: This scoping review aims to comprehensively review label noise management in deep learning-based medical prediction problems.
A total of 60 papers met inclusion criteria between 2016 and 2023.
We recommend considering label noise as a standard element in medical research, even if it is not dedicated to handling noisy labels.
- Score: 14.279891046240387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objectives: Medical research faces substantial challenges from noisy labels attributed to factors like inter-expert variability and machine-extracted labels. Despite this, the adoption of label noise management remains limited, and label noise is largely ignored. To this end, there is a critical need to conduct a scoping review focusing on the problem space. This scoping review aims to comprehensively review label noise management in deep learning-based medical prediction problems, which includes label noise detection, label noise handling, and evaluation. Research involving label uncertainty is also included. Methods: Our scoping review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched 4 databases, including PubMed, IEEE Xplore, Google Scholar, and Semantic Scholar. Our search terms include "noisy label AND medical / healthcare / clinical", "un-certainty AND medical / healthcare / clinical", and "noise AND medical / healthcare / clinical". Results: A total of 60 papers met inclusion criteria between 2016 and 2023. A series of practical questions in medical research are investigated. These include the sources of label noise, the impact of label noise, the detection of label noise, label noise handling techniques, and their evaluation. Categorization of both label noise detection methods and handling techniques are provided. Discussion: From a methodological perspective, we observe that the medical community has been up to date with the broader deep-learning community, given that most techniques have been evaluated on medical data. We recommend considering label noise as a standard element in medical research, even if it is not dedicated to handling noisy labels. Initial experiments can start with easy-to-implement methods, such as noise-robust loss functions, weighting, and curriculum learning.
Related papers
- Training Gradient Boosted Decision Trees on Tabular Data Containing Label Noise for Classification Tasks [1.261491746208123]
This study aims to investigate the effects of label noise on gradient-boosted decision trees and methods to mitigate those effects.
The implemented methods demonstrate state-of-the-art noise detection performance on the Adult dataset and achieve the highest classification precision and recall on the Adult and Breast Cancer datasets.
arXiv Detail & Related papers (2024-09-13T09:09:24Z) - How does self-supervised pretraining improve robustness against noisy
labels across various medical image classification datasets? [9.371321044764624]
Noisy labels can significantly impact medical image classification, particularly in deep learning.
Self-supervised pretraining, which doesn't rely on labeled data, can enhance robustness against noisy labels.
Our results show that DermNet, among five datasets, is the most challenging but exhibits greater robustness against noisy labels.
arXiv Detail & Related papers (2024-01-15T22:29:23Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
We propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification.
We employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples.
We also design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples.
arXiv Detail & Related papers (2022-05-10T07:50:08Z) - Learning to Aggregate and Refine Noisy Labels for Visual Sentiment
Analysis [69.48582264712854]
We propose a robust learning method to perform robust visual sentiment analysis.
Our method relies on an external memory to aggregate and filter noisy labels during training.
We establish a benchmark for visual sentiment analysis with label noise using publicly available datasets.
arXiv Detail & Related papers (2021-09-15T18:18:28Z) - Co-Correcting: Noise-tolerant Medical Image Classification via mutual
Label Correction [5.994566233473544]
This paper proposes a noise-tolerant medical image classification framework named Co-Correcting.
It significantly improves classification accuracy and obtains more accurate labels through dual-network mutual learning, label probability estimation, and curriculum label correcting.
Experiments show that Co-Correcting achieves the best accuracy and generalization under different noise ratios in various tasks.
arXiv Detail & Related papers (2021-09-11T02:09:52Z) - Improving Medical Image Classification with Label Noise Using
Dual-uncertainty Estimation [72.0276067144762]
We discuss and define the two common types of label noise in medical images.
We propose an uncertainty estimation-based framework to handle these two label noise amid the medical image classification task.
arXiv Detail & Related papers (2021-02-28T14:56:45Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
The presence of label noise often misleads the training of deep neural networks.
We show that the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks.
arXiv Detail & Related papers (2020-12-22T06:36:58Z) - Deep Learning from Small Amount of Medical Data with Noisy Labels: A
Meta-Learning Approach [0.0]
Computer vision systems require correctly labeled large datasets in order to be trained properly.
Medical imaging datasets are commonly tiny, which makes each data very important in learning.
A label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article.
arXiv Detail & Related papers (2020-10-14T10:39:44Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
We seek to exploit rich labeled data from relevant domains to help the learning in the target task via Unsupervised Domain Adaptation (UDA)
Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm.
We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images.
arXiv Detail & Related papers (2020-07-05T11:49:17Z) - Towards Noise-resistant Object Detection with Noisy Annotations [119.63458519946691]
Training deep object detectors requires significant amount of human-annotated images with accurate object labels and bounding box coordinates.
Noisy annotations are much more easily accessible, but they could be detrimental for learning.
We address the challenging problem of training object detectors with noisy annotations, where the noise contains a mixture of label noise and bounding box noise.
arXiv Detail & Related papers (2020-03-03T01:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.