Probabilistic Circuits with Constraints via Convex Optimization
- URL: http://arxiv.org/abs/2403.13125v1
- Date: Tue, 19 Mar 2024 19:55:38 GMT
- Title: Probabilistic Circuits with Constraints via Convex Optimization
- Authors: Soroush Ghandi, Benjamin Quost, Cassio de Campos,
- Abstract summary: The proposed approach takes both a PC and constraints as inputs, and outputs a new PC that satisfies the constraints.
Empirical evaluations indicate that the combination of constraints and PCs can have multiple use cases.
- Score: 2.6436521007616114
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work addresses integrating probabilistic propositional logic constraints into the distribution encoded by a probabilistic circuit (PC). PCs are a class of tractable models that allow efficient computations (such as conditional and marginal probabilities) while achieving state-of-the-art performance in some domains. The proposed approach takes both a PC and constraints as inputs, and outputs a new PC that satisfies the constraints. This is done efficiently via convex optimization without the need to retrain the entire model. Empirical evaluations indicate that the combination of constraints and PCs can have multiple use cases, including the improvement of model performance under scarce or incomplete data, as well as the enforcement of machine learning fairness measures into the model without compromising model fitness. We believe that these ideas will open possibilities for multiple other applications involving the combination of logics and deep probabilistic models.
Related papers
- Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
We show that optimal fair representations possess several useful structural properties.
We then show that these approxing problems can be solved efficiently via concave programming methods.
arXiv Detail & Related papers (2024-09-26T08:46:48Z) - Sparse Variational Student-t Processes [8.46450148172407]
Student-t Processes are used to model heavy-tailed distributions and datasets with outliers.
We propose a sparse representation framework to allow Student-t Processes to be more flexible for real-world datasets.
We evaluate two proposed approaches on various synthetic and real-world datasets from UCI and Kaggle.
arXiv Detail & Related papers (2023-12-09T12:55:20Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Continuous Mixtures of Tractable Probabilistic Models [10.667104977730304]
Probabilistic models based on continuous latent spaces, such as variational autoencoders, can be understood as uncountable mixture models.
Probabilistic circuits (PCs) can be understood as hierarchical discrete mixture models.
In this paper, we investigate a hybrid approach, namely continuous mixtures of tractable models with a small latent dimension.
arXiv Detail & Related papers (2022-09-21T18:18:32Z) - Linear-Time Probabilistic Solutions of Boundary Value Problems [27.70274403550477]
We introduce a Gauss--Markov prior and tailor it specifically to BVPs.
This allows computing a posterior distribution over the solution in linear time, at a quality and cost comparable to that of well-established, non-probabilistic methods.
arXiv Detail & Related papers (2021-06-14T21:19:17Z) - Probabilistic Generating Circuits [50.98473654244851]
We propose probabilistic generating circuits (PGCs) for their efficient representation.
PGCs are not just a theoretical framework that unifies vastly different existing models, but also show huge potential in modeling realistic data.
We exhibit a simple class of PGCs that are not trivially subsumed by simple combinations of PCs and DPPs, and obtain competitive performance on a suite of density estimation benchmarks.
arXiv Detail & Related papers (2021-02-19T07:06:53Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.