Sparse Variational Student-t Processes
- URL: http://arxiv.org/abs/2312.05568v1
- Date: Sat, 9 Dec 2023 12:55:20 GMT
- Title: Sparse Variational Student-t Processes
- Authors: Jian Xu, Delu Zeng
- Abstract summary: Student-t Processes are used to model heavy-tailed distributions and datasets with outliers.
We propose a sparse representation framework to allow Student-t Processes to be more flexible for real-world datasets.
We evaluate two proposed approaches on various synthetic and real-world datasets from UCI and Kaggle.
- Score: 8.46450148172407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The theory of Bayesian learning incorporates the use of Student-t Processes
to model heavy-tailed distributions and datasets with outliers. However,
despite Student-t Processes having a similar computational complexity as
Gaussian Processes, there has been limited emphasis on the sparse
representation of this model. This is mainly due to the increased difficulty in
modeling and computation compared to previous sparse Gaussian Processes. Our
motivation is to address the need for a sparse representation framework that
reduces computational complexity, allowing Student-t Processes to be more
flexible for real-world datasets. To achieve this, we leverage the conditional
distribution of Student-t Processes to introduce sparse inducing points.
Bayesian methods and variational inference are then utilized to derive a
well-defined lower bound, facilitating more efficient optimization of our model
through stochastic gradient descent. We propose two methods for computing the
variational lower bound, one utilizing Monte Carlo sampling and the other
employing Jensen's inequality to compute the KL regularization term in the loss
function. We propose adopting these approaches as viable alternatives to
Gaussian processes when the data might contain outliers or exhibit heavy-tailed
behavior, and we provide specific recommendations for their applicability. We
evaluate the two proposed approaches on various synthetic and real-world
datasets from UCI and Kaggle, demonstrating their effectiveness compared to
baseline methods in terms of computational complexity and accuracy, as well as
their robustness to outliers.
Related papers
- Constructing Gaussian Processes via Samplets [0.0]
We examine recent convergence results to identify models with optimal convergence rates.
We propose a Samplet-based approach to efficiently construct and train the Gaussian Processes.
arXiv Detail & Related papers (2024-11-11T18:01:03Z) - Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
We show that optimal fair representations possess several useful structural properties.
We then show that these approxing problems can be solved efficiently via concave programming methods.
arXiv Detail & Related papers (2024-09-26T08:46:48Z) - Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data [9.913418444556486]
We show how iterative methods can be used to reduce the computational costs for calculating likelihoods, gradients, and predictive distributions with FSAs.
We also present a novel, accurate, and fast way to calculate predictive variances relying on estimations and iterative methods.
All methods are implemented in a free C++ software library with high-level Python and R packages.
arXiv Detail & Related papers (2024-05-23T12:25:22Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
This paper proposes a voice conversion method that works with limited data.
It is based on variational deep kernel learning (SVDKL)
It is possible to estimate non-smooth and more complex functions.
arXiv Detail & Related papers (2023-09-08T16:32:47Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Efficient Marginalization of Discrete and Structured Latent Variables
via Sparsity [26.518803984578867]
Training neural network models with discrete (categorical or structured) latent variables can be computationally challenging.
One typically resorts to sampling-based approximations of the true marginal.
We propose a new training strategy which replaces these estimators by an exact yet efficient marginalization.
arXiv Detail & Related papers (2020-07-03T19:36:35Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z) - Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
Predictive Uncertainties [12.068153197381575]
We propose a novel variational family that allows for retaining covariances between latent processes while achieving fast convergence.
We provide an efficient implementation of our new approach and apply it to several benchmark datasets.
It yields excellent results and strikes a better balance between accuracy and calibrated uncertainty estimates than its state-of-the-art alternatives.
arXiv Detail & Related papers (2020-05-22T11:10:59Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.