論文の概要: A Study of Vulnerability Repair in JavaScript Programs with Large Language Models
- arxiv url: http://arxiv.org/abs/2403.13193v1
- Date: Tue, 19 Mar 2024 23:04:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 18:27:31.940728
- Title: A Study of Vulnerability Repair in JavaScript Programs with Large Language Models
- Title(参考訳): 大規模言語モデルを用いたJavaScriptプログラムの脆弱性修復に関する研究
- Authors: Tan Khang Le, Saba Alimadadi, Steven Y. Ko,
- Abstract要約: 大規模言語モデル(LLM)は、複数のドメインにまたがる大幅な進歩を示している。
実世界のソフトウェア脆弱性に関する我々の実験によると、LLMはJavaScriptコードの自動プログラム修復において有望であるが、正しいバグ修正を達成するには、しばしばプロンプトで適切なコンテキストを必要とする。
- 参考スコア(独自算出の注目度): 2.4622939109173885
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, JavaScript has become the most widely used programming language, especially in web development. However, writing secure JavaScript code is not trivial, and programmers often make mistakes that lead to security vulnerabilities in web applications. Large Language Models (LLMs) have demonstrated substantial advancements across multiple domains, and their evolving capabilities indicate their potential for automatic code generation based on a required specification, including automatic bug fixing. In this study, we explore the accuracy of LLMs, namely ChatGPT and Bard, in finding and fixing security vulnerabilities in JavaScript programs. We also investigate the impact of context in a prompt on directing LLMs to produce a correct patch of vulnerable JavaScript code. Our experiments on real-world software vulnerabilities show that while LLMs are promising in automatic program repair of JavaScript code, achieving a correct bug fix often requires an appropriate amount of context in the prompt.
- Abstract(参考訳): 近年、JavaScriptは特にWeb開発において最も広く使われているプログラミング言語となっている。
しかし、セキュアなJavaScriptコードを書くのは簡単ではなく、プログラマはWebアプリケーションのセキュリティ上の脆弱性につながる間違いを犯すことが多い。
大規模言語モデル(LLM)は、複数のドメインにまたがる大幅な進歩を示しており、その進化する能力は、自動バグ修正を含む要求仕様に基づいて自動コード生成の可能性を示している。
本研究では,JavaScriptプログラムにおけるセキュリティ脆弱性の発見と修正におけるLCM,すなわちChatGPTとBardの精度について検討する。
また、脆弱なJavaScriptコードの正しいパッチを生成するためにLLMを指示するプロンプトにおけるコンテキストの影響についても検討する。
実世界のソフトウェア脆弱性に関する我々の実験によると、LLMはJavaScriptコードの自動プログラム修復において有望であるが、正しいバグ修正を達成するには、しばしばプロンプトに適切なコンテキストを必要とする。
関連論文リスト
- SafePyScript: A Web-Based Solution for Machine Learning-Driven Vulnerability Detection in Python [0.0]
SafePyScriptはPythonソースコードの脆弱性を特定するために設計された機械学習ベースのWebアプリケーションである。
主要なプログラミング言語としてのPythonの重要性にもかかわらず、現在、ソースコードの脆弱性を検出するための便利で使いやすい機械学習ベースのWebアプリケーションは存在しない。
論文 参考訳(メタデータ) (2024-11-01T14:49:33Z) - Aligning LLMs to Be Robust Against Prompt Injection [55.07562650579068]
インジェクション攻撃に対してLCMをより堅牢にするための強力なツールとしてアライメントが有効であることを示す。
私たちのメソッド -- SecAlign -- は、最初に、プロンプトインジェクション攻撃をシミュレートしてアライメントデータセットを構築します。
実験の結果,SecAlign は LLM を大幅に強化し,モデルの実用性に悪影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2024-10-07T19:34:35Z) - NAVRepair: Node-type Aware C/C++ Code Vulnerability Repair [14.152755184229374]
NAVRepairは、ASTから抽出されたノードタイプ情報とエラータイプを組み合わせた、新しいフレームワークである。
既存のLLMベースのC/C++脆弱性修復法と比較して26%高い精度を実現している。
論文 参考訳(メタデータ) (2024-05-08T11:58:55Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - A Novel Approach for Automatic Program Repair using Round-Trip
Translation with Large Language Models [50.86686630756207]
研究によると、ある文の文法的誤りは、それを他の言語に翻訳し、その語を返せば修正できる。
現在の自動プログラム修復(APR)生成モデルは、ソースコードで事前訓練され、修正のために微調整されている。
本稿では,あるプログラミング言語から別のプログラミング言語,あるいは自然言語へのコード変換,そして,その逆といった,微調整ステップをバイパスし,ラウンド・トリップ変換(RTT)を用いる手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T22:36:31Z) - Static Semantics Reconstruction for Enhancing JavaScript-WebAssembly Multilingual Malware Detection [51.15122099046214]
WebAssemblyを使うと、攻撃者は言語間の相互運用でJavaScriptマルウェアの悪意のある機能を隠せる。
JavaScriptとWebAssembly間の複雑な相互運用とセマンティックな多様性のため、JavaScript-WebAssemblyマルチ言語マルウェア(JWMM)の検出は難しい。
本稿では,JWMMの静的検出を高速化する最初の手法であるJWBinderを紹介する。
論文 参考訳(メタデータ) (2023-10-26T10:59:45Z) - Can Large Language Models Find And Fix Vulnerable Software? [0.0]
GPT-4は、その脆弱性の約4倍の脆弱性を同定した。
各脆弱性に対して実行可能な修正を提供し、偽陽性率の低いことを証明した。
GPT-4のコード修正により脆弱性の90%が減少し、コード行数はわずか11%増加した。
論文 参考訳(メタデータ) (2023-08-20T19:33:12Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - Can OpenAI Codex and Other Large Language Models Help Us Fix Security
Bugs? [8.285068188878578]
コード修復における大規模言語モデル (LLM) の利用について検討する。
安全でないコードの修正版を生成するためにLLMをコークスするプロンプトを設計する際の課題について検討する。
実験の結果、LLMは人工的に生成されたシナリオと手作りのシナリオの100%をまとめて修復できることがわかった。
論文 参考訳(メタデータ) (2021-12-03T19:15:02Z) - Montage: A Neural Network Language Model-Guided JavaScript Engine Fuzzer [18.908548472588976]
私たちは、JSエンジンの脆弱性を見つけるための最初のNNLM誘導ファザであるMontageを紹介します。
Montage氏は最新のJSエンジンで3つのCVEを含む37の現実世界のバグを発見した。
論文 参考訳(メタデータ) (2020-01-13T08:45:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。