Depth-guided NeRF Training via Earth Mover's Distance
- URL: http://arxiv.org/abs/2403.13206v2
- Date: Wed, 4 Sep 2024 22:45:38 GMT
- Title: Depth-guided NeRF Training via Earth Mover's Distance
- Authors: Anita Rau, Josiah Aklilu, F. Christopher Holsinger, Serena Yeung-Levy,
- Abstract summary: We propose a novel approach to uncertainty in depth priors for NeRF supervision.
We use off-the-shelf pretrained diffusion models to predict depth and capture uncertainty during the denoising process.
Our depth-guided NeRF outperforms all baselines on standard depth metrics by a large margin.
- Score: 0.6749750044497732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRFs) are trained to minimize the rendering loss of predicted viewpoints. However, the photometric loss often does not provide enough information to disambiguate between different possible geometries yielding the same image. Previous work has thus incorporated depth supervision during NeRF training, leveraging dense predictions from pre-trained depth networks as pseudo-ground truth. While these depth priors are assumed to be perfect once filtered for noise, in practice, their accuracy is more challenging to capture. This work proposes a novel approach to uncertainty in depth priors for NeRF supervision. Instead of using custom-trained depth or uncertainty priors, we use off-the-shelf pretrained diffusion models to predict depth and capture uncertainty during the denoising process. Because we know that depth priors are prone to errors, we propose to supervise the ray termination distance distribution with Earth Mover's Distance instead of enforcing the rendered depth to replicate the depth prior exactly through L2-loss. Our depth-guided NeRF outperforms all baselines on standard depth metrics by a large margin while maintaining performance on photometric measures.
Related papers
- Uncertainty-guided Optimal Transport in Depth Supervised Sparse-View 3D Gaussian [49.21866794516328]
3D Gaussian splatting has demonstrated impressive performance in real-time novel view synthesis.
Previous approaches have incorporated depth supervision into the training of 3D Gaussians to mitigate overfitting.
We introduce a novel method to supervise the depth distribution of 3D Gaussians, utilizing depth priors with integrated uncertainty estimates.
arXiv Detail & Related papers (2024-05-30T03:18:30Z) - TD-NeRF: Novel Truncated Depth Prior for Joint Camera Pose and Neural Radiance Field Optimization [19.73020713365866]
The reliance on accurate camera poses is a significant barrier to the widespread deployment of Neural Radiance Fields (NeRF) models for 3D reconstruction and SLAM tasks.
The existing method introduces monocular depth priors to jointly optimize the camera poses and NeRF, which fails to fully exploit the depth priors and neglects the impact of their inherent noise.
We propose Truncated Depth NeRF (TD-NeRF), a novel approach that enables training NeRF from unknown camera poses - by jointly optimizing learnable parameters of the radiance field and camera poses.
arXiv Detail & Related papers (2024-05-11T14:57:42Z) - Non-learning Stereo-aided Depth Completion under Mis-projection via
Selective Stereo Matching [0.5067618621449753]
We propose a non-learning depth completion method for a sparse depth map captured using a light detection and ranging (LiDAR) sensor guided by a pair of stereo images.
The proposed method reduced the mean absolute error (MAE) of the depth estimation to 0.65 times and demonstrated approximately twice more accurate estimation in the long range.
arXiv Detail & Related papers (2022-10-04T07:46:56Z) - Weakly-Supervised Monocular Depth Estimationwith Resolution-Mismatched
Data [73.9872931307401]
We propose a novel weakly-supervised framework to train a monocular depth estimation network.
The proposed framework is composed of a sharing weight monocular depth estimation network and a depth reconstruction network for distillation.
Experimental results demonstrate that our method achieves superior performance than unsupervised and semi-supervised learning based schemes.
arXiv Detail & Related papers (2021-09-23T18:04:12Z) - Depth-supervised NeRF: Fewer Views and Faster Training for Free [69.34556647743285]
DS-NeRF (Depth-supervised Neural Radiance Fields) is a loss for learning fields that takes advantage of readily-available depth supervision.
We show that our loss is compatible with other recently proposed NeRF methods, demonstrating that depth is a cheap and easily digestible supervisory signal.
arXiv Detail & Related papers (2021-07-06T17:58:35Z) - Progressive Depth Learning for Single Image Dehazing [56.71963910162241]
Existing dehazing methods often ignore the depth cues and fail in distant areas where heavier haze disturbs the visibility.
We propose a deep end-to-end model that iteratively estimates image depths and transmission maps.
Our approach benefits from explicitly modeling the inner relationship of image depth and transmission map, which is especially effective for distant hazy areas.
arXiv Detail & Related papers (2021-02-21T05:24:18Z) - Deep Multi-view Depth Estimation with Predicted Uncertainty [11.012201499666503]
We employ a dense-optical-flow network to compute correspondences and then triangulate the point cloud to obtain an initial depth map.
To further increase the triangulation accuracy, we introduce a depth-refinement network (DRN) that optimize the initial depth map based on the image's contextual cues.
arXiv Detail & Related papers (2020-11-19T00:22:09Z) - Calibrating Self-supervised Monocular Depth Estimation [77.77696851397539]
In the recent years, many methods demonstrated the ability of neural networks to learn depth and pose changes in a sequence of images, using only self-supervision as the training signal.
We show that incorporating prior information about the camera configuration and the environment, we can remove the scale ambiguity and predict depth directly, still using the self-supervised formulation and not relying on any additional sensors.
arXiv Detail & Related papers (2020-09-16T14:35:45Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.