論文の概要: Nellie: Automated organelle segmentation, tracking, and hierarchical feature extraction in 2D/3D live-cell microscopy
- arxiv url: http://arxiv.org/abs/2403.13214v2
- Date: Tue, 15 Oct 2024 00:12:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 13:59:51.443921
- Title: Nellie: Automated organelle segmentation, tracking, and hierarchical feature extraction in 2D/3D live-cell microscopy
- Title(参考訳): Nellie: 2D/3DLive-cell microscopyにおけるオルガネラ分画、追跡、階層的特徴抽出の自動化
- Authors: Austin E. Y. T. Lefebvre, Gabriel Sturm, Ting-Yu Lin, Emily Stoops, Magdalena Preciado Lopez, Benjamin Kaufmann-Malaga, Kayley Hake,
- Abstract要約: 我々は,様々な細胞内構造のセグメンテーション,トラッキング,特徴抽出のための,自動化された,バイアスのないユーザフレンドリーなパイプラインであるNellieを紹介した。
Nellieはイメージメタデータに適応し、ユーザの入力を排除します。
Nellieは、コードを使わない操作と視覚化を可能にする、ポイントアンドクリックのNapariベースのGUIを特徴としている。
- 参考スコア(独自算出の注目度): 1.4167683891758913
- License:
- Abstract: The analysis of dynamic organelles remains a formidable challenge, though key to understanding biological processes. We introduce Nellie, an automated and unbiased user-friendly pipeline for segmentation, tracking, and feature extraction of diverse intracellular structures. Nellie adapts to image metadata, eliminating user input. Nellie's preprocessing pipeline enhances structural contrast on multiple intracellular scales allowing for robust hierarchical segmentation of sub-organellar regions. Internal motion capture markers are generated and tracked via a radius-adaptive pattern matching scheme, and used as guides for sub-voxel flow interpolation. Nellie extracts a plethora of features at multiple hierarchical levels for deep and customizable analysis. Nellie features a point-and-click Napari-based GUI that allows for code-free operation and visualization, while its modular open-source codebase invites extension by experienced users. We demonstrate Nellie's wide variety of use cases with three examples: unmixing multiple organelles from a single channel using feature-based classification, training an unsupervised graph autoencoder on mitochondrial multi-mesh graphs to quantify latent space embedding changes following ionomycin treatment, and performing in-depth characterization and comparison of endoplasmic reticulum networks across different cell types and temporal frames.
- Abstract(参考訳): 動的オルガネラの分析は、生物学的プロセスを理解する上では重要な課題である。
我々は,様々な細胞内構造のセグメンテーション,トラッキング,特徴抽出のための,自動化された,バイアスのないユーザフレンドリーなパイプラインであるNellieを紹介した。
Nellieはイメージメタデータに適応し、ユーザの入力を排除します。
Nellieの前処理パイプラインは、複数の細胞内スケールの構造コントラストを高め、サブオーガナイザー領域の堅牢な階層的セグメンテーションを可能にする。
内部モーションキャプチャマーカーは、半径適応パターンマッチングスキームを介して生成・追跡され、サブボクセルフロー補間のためのガイドとして使用される。
Nellie氏は、深くカスタマイズ可能な分析のために、複数の階層レベルで多数の特徴を抽出する。
Nellieは、コードを使わない操作と視覚化を可能にする、ポイントアンドクリックのNapariベースのGUIを特徴としている。
機能に基づく分類を用いて単一チャネルから複数のオルガネラを解き放つこと、ミトコンドリアのマルチメシュグラフ上で教師なしグラフオートエンコーダを訓練すること、ヨーノマイシン治療後の潜伏空間埋め込み変化を定量化すること、異なる細胞タイプと側頭骨フレームをまたいだ小胞体ネットワークの詳細な特徴と比較を行うことである。
関連論文リスト
- MSA$^2$Net: Multi-scale Adaptive Attention-guided Network for Medical Image Segmentation [8.404273502720136]
MSA$2$Netは、スキップ接続を適切に設計した新しいディープセグメンテーションフレームワークである。
本稿では,空間的特徴を選択的に強調するために,MASAG(Multi-Scale Adaptive Space Attention Gate)を提案する。
MSA$2$Netは、最先端のSOTA(State-of-the-art)よりも優れています。
論文 参考訳(メタデータ) (2024-07-31T14:41:10Z) - FMDNN: A Fuzzy-guided Multi-granular Deep Neural Network for Histopathological Image Classification [40.94024666952439]
ファジィ誘導多粒性ディープニューラルネットワーク(FMDNN)を提案する。
病理学者の多粒性診断アプローチに触発され, 粗さ, 培地, 微粒度における細胞構造の特徴抽出を行った。
ファジィ誘導型クロスアテンションモジュールは、普遍的なファジィ特徴を多粒性特徴へ導く。
論文 参考訳(メタデータ) (2024-07-22T00:46:15Z) - AWGUNET: Attention-Aided Wavelet Guided U-Net for Nuclei Segmentation in Histopathology Images [26.333686941245197]
本稿では,U-NetアーキテクチャとDenseNet-121バックボーンを組み合わせたセグメンテーション手法を提案する。
本モデルでは,ウェーブレット誘導チャネルアテンションモジュールを導入し,セル境界のデライン化を促進させる。
その結果,Mouseg と TNBC の2つの病理組織学的データセットを用いて,提案モデルの優位性を実証した。
論文 参考訳(メタデータ) (2024-06-12T17:10:27Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
オーバーセグメントニューロン間の接続を予測し,人間の作業量を削減することを目的としている。
最初はFlyTracingという名前のデータセットを構築しました。
本稿では,高密度なボリュームEM画像の埋め込みを生成するための,新しい接続性を考慮したコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-05T19:45:12Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
本稿では,トランスフォーマーに基づく動的オンデマンドネットワーク(TransDoDNet)を提案する。
動的ヘッドにより、ネットワークは複数のセグメンテーションタスクを柔軟に達成することができる。
我々はMOTSと呼ばれる大規模にラベル付けされたMulti-Organ and tumorベンチマークを作成し、他の競合相手よりもTransDoDNetの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-13T13:03:09Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
可視データと熱データ間のメッセージ通信を促進するために,新しい動的モダリティ対応フィルタ生成モジュール(MFGNet)を提案する。
我々は、2つの独立ネットワークを持つ動的モダリティ対応フィルタを生成し、その可視フィルタとサーマルフィルタをそれぞれ、対応する入力特徴写像上で動的畳み込み演算を行う。
重閉塞,高速移動,外見による問題に対処するため,新たな方向認識型目標誘導型アテンション機構を活用することで,共同で局所的・グローバル検索を行うことを提案する。
論文 参考訳(メタデータ) (2021-07-22T03:10:51Z) - CleftNet: Augmented Deep Learning for Synaptic Cleft Detection from
Brain Electron Microscopy [49.3704402041314]
本稿では,脳em画像からのシナプス裂検出を改善するために,cleftnetと呼ばれる新しい拡張深層学習モデルを提案する。
まず、機能拡張器とラベル拡張器と呼ばれる2つの新しいネットワークコンポーネントを提案し、機能とラベルを強化し、口蓋表現を改善します。
論文 参考訳(メタデータ) (2021-01-12T02:45:53Z) - Convolutional Neural Networks for cytoarchitectonic brain mapping at
large scale [0.33727511459109777]
今回我々は,ヒト後脳の多数の細胞体染色組織における細胞構造学的領域をマッピングするための新しいワークフローを提案する。
これはDeep Convolutional Neural Network (CNN)に基づいており、アノテーション付きの一対のセクションイメージに基づいてトレーニングされており、その間に多数の注釈のないセクションがある。
新しいワークフローは、セクションの3D再構成を必要とせず、組織学的アーティファクトに対して堅牢である。
論文 参考訳(メタデータ) (2020-11-25T16:25:13Z) - LORCK: Learnable Object-Resembling Convolution Kernels [1.853658628381862]
セグメント化された器官の輪郭をミリ波で学習する,新しい中空核のクラスを提案する。
提案したカーネルを用いて一連のU-Netライクなニューラルネットワークをトレーニングし、様々な時間的畳み込みシナリオにおけるアイデアの優位性を実証する。
我々の結果は、他のドメイン固有のディープラーニングアプリケーションへの道を開いた。
論文 参考訳(メタデータ) (2020-07-09T23:17:40Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
中心線Dice (short clDice) と呼ばれる新しい類似度尺度を導入する。
理論的には、clDiceは2次元および3次元のセグメンテーションにおけるホモトピー同値までのトポロジー保存を保証する。
我々は、船舶、道路、ニューロン(2Dと3D)を含む5つの公開データセットでソフトクライス損失をベンチマークした。
論文 参考訳(メタデータ) (2020-03-16T16:27:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。