Facilitating Pornographic Text Detection for Open-Domain Dialogue Systems via Knowledge Distillation of Large Language Models
- URL: http://arxiv.org/abs/2403.13250v1
- Date: Wed, 20 Mar 2024 02:29:09 GMT
- Title: Facilitating Pornographic Text Detection for Open-Domain Dialogue Systems via Knowledge Distillation of Large Language Models
- Authors: Huachuan Qiu, Shuai Zhang, Hongliang He, Anqi Li, Zhenzhong Lan,
- Abstract summary: Pornographic content occurring in human-machine interaction dialogues can cause severe side effects for users in open-domain dialogue systems.
We introduce CensorChat, a dialogue monitoring dataset aimed at detecting whether the dialogue session contains pornographic content.
- Score: 26.443929802292807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pornographic content occurring in human-machine interaction dialogues can cause severe side effects for users in open-domain dialogue systems. However, research on detecting pornographic language within human-machine interaction dialogues is an important subject that is rarely studied. To advance in this direction, we introduce CensorChat, a dialogue monitoring dataset aimed at detecting whether the dialogue session contains pornographic content. To this end, we collect real-life human-machine interaction dialogues in the wild and break them down into single utterances and single-turn dialogues, with the last utterance spoken by the chatbot. We propose utilizing knowledge distillation of large language models to annotate the dataset. Specifically, first, the raw dataset is annotated by four open-source large language models, with the majority vote determining the label. Second, we use ChatGPT to update the empty label from the first step. Third, to ensure the quality of the validation and test sets, we utilize GPT-4 for label calibration. If the current label does not match the one generated by GPT-4, we employ a self-criticism strategy to verify its correctness. Finally, to facilitate the detection of pornographic text, we develop a series of text classifiers using a pseudo-labeled dataset. Detailed data analysis demonstrates that leveraging knowledge distillation techniques with large language models provides a practical and cost-efficient method for developing pornographic text detectors.
Related papers
- Learning From Free-Text Human Feedback -- Collect New Datasets Or Extend
Existing Ones? [57.16050211534735]
We investigate the types and frequency of free-text human feedback in commonly used dialog datasets.
Our findings provide new insights into the composition of the datasets examined, including error types, user response types, and the relations between them.
arXiv Detail & Related papers (2023-10-24T12:01:11Z) - Facilitating NSFW Text Detection in Open-Domain Dialogue Systems via Knowledge Distillation [26.443929802292807]
CensorChat is a dialogue monitoring dataset aimed at NSFW dialogue detection.
This dataset offers a cost-effective means of constructing NSFW content detectors.
The proposed approach not only advances NSFW content detection but also aligns with evolving user protection needs in AI-driven dialogues.
arXiv Detail & Related papers (2023-09-18T13:24:44Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - SuperDialseg: A Large-scale Dataset for Supervised Dialogue Segmentation [55.82577086422923]
We provide a feasible definition of dialogue segmentation points with the help of document-grounded dialogues.
We release a large-scale supervised dataset called SuperDialseg, containing 9,478 dialogues.
We also provide a benchmark including 18 models across five categories for the dialogue segmentation task.
arXiv Detail & Related papers (2023-05-15T06:08:01Z) - Multi-grained Hypergraph Interest Modeling for Conversational
Recommendation [75.65483522949857]
We propose a novel multi-grained hypergraph interest modeling approach to capture user interest beneath intricate historical data.
In our approach, we first employ the hypergraph structure to model users' historical dialogue sessions and form a session-based hypergraph, which captures coarse-grained, session-level relations.
We further conduct multi-grained hypergraph convolution on the two kinds of hypergraphs, and utilize the enhanced representations to develop interest-aware CRS.
arXiv Detail & Related papers (2023-05-04T13:13:44Z) - Learning Object-Language Alignments for Open-Vocabulary Object Detection [83.09560814244524]
We propose a novel open-vocabulary object detection framework directly learning from image-text pair data.
It enables us to train an open-vocabulary object detector on image-text pairs in a much simple and effective way.
arXiv Detail & Related papers (2022-11-27T14:47:31Z) - Commonsense-Focused Dialogues for Response Generation: An Empirical
Study [39.49727190159279]
We present an empirical study of commonsense in dialogue response generation.
We first auto-extract commonsensical dialogues from existing dialogue datasets by leveraging ConceptNet.
We then collect a new dialogue dataset with 25K dialogues aimed at exhibiting social commonsense in an interactive setting.
arXiv Detail & Related papers (2021-09-14T04:32:09Z) - Graph Based Network with Contextualized Representations of Turns in
Dialogue [0.0]
Dialogue-based relation extraction (RE) aims to extract relation(s) between two arguments that appear in a dialogue.
We propose the TUrn COntext awaRE Graph Convolutional Network (TUCORE-GCN) modeled by paying attention to the way people understand dialogues.
arXiv Detail & Related papers (2021-09-09T03:09:08Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.