論文の概要: Counting Network for Learning from Majority Label
- arxiv url: http://arxiv.org/abs/2403.13370v1
- Date: Wed, 20 Mar 2024 08:04:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 17:38:28.108674
- Title: Counting Network for Learning from Majority Label
- Title(参考訳): 大規模ラベルから学ぶためのカウントネットワーク
- Authors: Kaito Shiku, Shinnosuke Matsuo, Daiki Suehiro, Ryoma Bise,
- Abstract要約: 本稿では,LML(Learning from the Majority Label)と呼ばれるマルチクラスマルチインスタンス学習における新しい問題を提案する。
LMLは、バッグレベルのマジョリティクラスを使用してインスタンスを分類することを目的としている。
本稿では,各クラスのインスタンス数をカウントして推定したバッグレベルの過半数ラベルを生成するために訓練されたカウントネットワークを提案する。
- 参考スコア(独自算出の注目度): 4.199844472131922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper proposes a novel problem in multi-class Multiple-Instance Learning (MIL) called Learning from the Majority Label (LML). In LML, the majority class of instances in a bag is assigned as the bag's label. LML aims to classify instances using bag-level majority classes. This problem is valuable in various applications. Existing MIL methods are unsuitable for LML due to aggregating confidences, which may lead to inconsistency between the bag-level label and the label obtained by counting the number of instances for each class. This may lead to incorrect instance-level classification. We propose a counting network trained to produce the bag-level majority labels estimated by counting the number of instances for each class. This led to the consistency of the majority class between the network outputs and one obtained by counting the number of instances. Experimental results show that our counting network outperforms conventional MIL methods on four datasets The code is publicly available at https://github.com/Shiku-Kaito/Counting-Network-for-Learning-from-Majority-Label.
- Abstract(参考訳): 本稿では,LML(Learning from the Majority Label)と呼ばれるマルチクラスマルチインスタンス学習(MIL)における新しい問題を提案する。
LMLでは、バッグ内のほとんどのインスタンスがバッグのラベルとして割り当てられる。
LMLは、バッグレベルのマジョリティクラスを使用してインスタンスを分類することを目的としている。
この問題は様々な応用に有用である。
既存のMILメソッドは、信頼の集約によるLMLには適さないため、バッグレベルラベルと各クラスのインスタンス数を数えて得られたラベルとの矛盾につながる可能性がある。
これは誤ったインスタンスレベルの分類につながる可能性がある。
本稿では,各クラスのインスタンス数をカウントして推定したバッグレベルの過半数ラベルを生成するために訓練されたカウントネットワークを提案する。
これにより、ネットワーク出力とインスタンス数をカウントして得られるものとの間に、多数派クラスの一貫性がもたらされた。
このコードはhttps://github.com/Shiku-Kaito/Counting-for-Learning-to-Majority-Labelで公開されている。
関連論文リスト
- Disambiguated Attention Embedding for Multi-Instance Partial-Label
Learning [68.56193228008466]
多くの実世界のタスクでは、関連するオブジェクトは、候補ラベルセットに関連付けられたマルチインスタンスバッグとして表現することができる。
既存のMIPLアプローチは、各インスタンスに拡張候補ラベルセットを割り当て、インスタンスレベルのラベルからバッグレベルのラベルを集約することで、インスタンス空間のパラダイムに従っている。
本稿では,DEMIPLという直感的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-26T13:25:17Z) - Multi-Instance Partial-Label Learning: Towards Exploiting Dual Inexact
Supervision [53.530957567507365]
実世界のタスクでは、各トレーニングサンプルは、1つの基底真実ラベルといくつかの偽陽性ラベルを含む候補ラベルセットに関連付けられている。
本稿では,Multi-instance partial-label learning (MIPL) などの問題を定式化する。
既存のマルチインスタンス学習アルゴリズムと部分ラベル学習アルゴリズムはMIPL問題の解法に最適である。
論文 参考訳(メタデータ) (2022-12-18T03:28:51Z) - Multiple Instance Learning via Iterative Self-Paced Supervised
Contrastive Learning [22.07044031105496]
バッグレベルのラベルのみが利用可能な場合の個々のインスタンスの学習表現は、MIL(Multiple Case Learning)の課題である。
我々は、MIL表現のための新しいフレームワーク、Iterative Self-paced Supervised Contrastive Learning (ItS2CLR)を提案する。
バッグレベルのラベルから派生したインスタンスレベルの擬似ラベルを活用することで、学習された表現を改善する。
論文 参考訳(メタデータ) (2022-10-17T21:43:32Z) - Class-Incremental Lifelong Learning in Multi-Label Classification [3.711485819097916]
本稿では、連続したマルチラベル分類データストリームにオンラインのクラスインクリメンタル分類器を構築する、Lifelong Multi-Label (LML)分類について検討する。
そこで本研究では,AGCN (Augmented Graph Convolutional Network) を提案する。
論文 参考訳(メタデータ) (2022-07-16T05:14:07Z) - On Non-Random Missing Labels in Semi-Supervised Learning [114.62655062520425]
Semi-Supervised Learning (SSL)は基本的にラベルの問題である。
SSL に "class" を明示的に組み込んでいます。
提案手法は,既存のベースラインを著しく上回るだけでなく,他のラベルバイアス除去SSL法を上回ります。
論文 参考訳(メタデータ) (2022-06-29T22:01:29Z) - Large Loss Matters in Weakly Supervised Multi-Label Classification [50.262533546999045]
まず、観測されていないラベルを負のラベルとみなし、Wタスクをノイズの多いマルチラベル分類にキャストする。
ノイズラベルを記憶しないために,大規模な損失サンプルを拒絶または補正する新しいW法を提案する。
提案手法は, 弱教師付きマルチラベル分類において, 大きな損失を適切に処理することが重要であることを検証した。
論文 参考訳(メタデータ) (2022-06-08T08:30:24Z) - Trustable Co-label Learning from Multiple Noisy Annotators [68.59187658490804]
監督されたディープラーニングは、大量の注釈付き例に依存している。
典型的な方法は、複数のノイズアノテータから学習することである。
本稿では,emphTrustable Co-label Learning (TCL)と呼ばれるデータ効率のよい手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T16:57:00Z) - Fast learning from label proportions with small bags [0.0]
ラベルパーセンテージ(LLP)から学ぶ場合、インスタンスはバッグにグループ化され、トレーニングバッグの相対クラスパーセンテージが与えられたインスタンス分類器を学習する。
本研究では,全ての一貫したラベルの組み合わせを明示的に考慮し,より効率的なアルゴリズムを設計できる小袋の事例に焦点を当てる。
論文 参考訳(メタデータ) (2021-10-07T13:11:18Z) - Active Learning in Incomplete Label Multiple Instance Multiple Label
Learning [17.5720245903743]
MIML設定におけるアクティブラーニングのための新しいバッグクラスペア方式を提案する。
我々のアプローチは、効率的かつ正確な推論を伴う識別的グラフィカルモデルに基づいている。
論文 参考訳(メタデータ) (2021-07-22T17:01:28Z) - Many-Class Few-Shot Learning on Multi-Granularity Class Hierarchy [57.68486382473194]
我々は,教師付き学習とメタ学習の両方において,MCFS(Multi-class few-shot)問題について検討した。
本稿では,クラス階層を事前知識として活用し,粗大な分類器を訓練する。
モデル「メモリ拡張階層分類ネットワーク(MahiNet)」は、各粗いクラスが複数の細かなクラスをカバーできる粗い粒度分類を行う。
論文 参考訳(メタデータ) (2020-06-28T01:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。