論文の概要: Federated Learning Resilient to Byzantine Attacks and Data Heterogeneity
- arxiv url: http://arxiv.org/abs/2403.13374v4
- Date: Mon, 29 Sep 2025 08:52:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:18.651861
- Title: Federated Learning Resilient to Byzantine Attacks and Data Heterogeneity
- Title(参考訳): ビザンチン攻撃に耐性を持つフェデレート学習とデータ不均一性
- Authors: Shiyuan Zuo, Xingrun Yan, Rongfei Fan, Han Hu, Hangguan Shan, Tony Q. S. Quek, Puning Zhao,
- Abstract要約: 本稿では、データに対する悪意ある攻撃の文脈におけるグラディエント学習(FL)について述べる。
本稿では,収束解析と損失関数の中央値を用いた新しい平均ロバストアルゴリズム(RAGA)を提案する。
- 参考スコア(独自算出の注目度): 59.17297282373628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses federated learning (FL) in the context of malicious Byzantine attacks and data heterogeneity. We introduce a novel Robust Average Gradient Algorithm (RAGA), which uses the geometric median for aggregation and {allows flexible round number for local updates.} Unlike most existing resilient approaches, which base their convergence analysis on strongly-convex loss functions or homogeneously distributed datasets, this work conducts convergence analysis for both strongly-convex and non-convex loss functions over heterogeneous datasets. The theoretical analysis indicates that as long as the fraction of the {data} from malicious users is less than half, RAGA can achieve convergence at a rate of $\mathcal{O}({1}/{T^{2/3- \delta}})$ for non-convex loss functions, where $T$ is the iteration number and $\delta \in (0, 2/3)$. For strongly-convex loss functions, the convergence rate is linear. Furthermore, the stationary point or global optimal solution is shown to be attainable as data heterogeneity diminishes. Experimental results validate the robustness of RAGA against Byzantine attacks and demonstrate its superior convergence performance compared to baselines under varying intensities of Byzantine attacks on heterogeneous datasets.
- Abstract(参考訳): 本稿では,悪質なビザンチン攻撃とデータ不均一性の文脈において,フェデレーション学習(FL)に対処する。
本稿では,局所的な更新に幾何中央値を使い,局所的な更新にフレキシブルなラウンド番号を許容する新しいロバスト平均勾配アルゴリズム(RAGA)を提案する。
強凸損失関数や均質分散データセットに基づく収束解析を基礎とする既存のレジリエントアプローチとは異なり、この研究は、強凸損失関数と非凸損失関数の両方を異種データセット上で収束解析する。
この理論解析は、悪意のあるユーザからのデータの割合が半分以下である限り、RAGAは非凸損失関数に対して$\mathcal{O}({1}/{T^{2/3- \delta}})$で収束し、$T$は反復数、$\delta \in (0, 2/3)$であることを示している。
強凸損失関数の場合、収束速度は線型である。
さらに、データの不均一性が減少するにつれて、定常点あるいは大域最適解が達成できることが示されている。
実験により, ビザンチン攻撃に対するRAGAのロバスト性を検証するとともに, 不均一なデータセットに対するビザンチン攻撃の異なる強度下でのベースラインと比較して, 収束性能が優れていることを示した。
関連論文リスト
- sparseGeoHOPCA: A Geometric Solution to Sparse Higher-Order PCA Without Covariance Estimation [8.802387139798808]
本稿では,高次主成分分析(SHOPCA)のための新しいフレームワークを提案する。
本稿では,SparseGeoHOPが高次元画像設定とImageNet上でサポートされていることを示す。
論文 参考訳(メタデータ) (2025-06-10T10:30:48Z) - Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
分散サーバ(DFL)はクライアント・クライアント・アーキテクチャへの依存をなくす。
非滑らかな正規化はしばしば機械学習タスクに組み込まれる。
本稿では,これらの問題を解決する新しいDNCFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-17T08:32:25Z) - FedCanon: Non-Convex Composite Federated Learning with Efficient Proximal Operation on Heterogeneous Data [17.80715992954134]
複合学習は、追加の正規化用語で機械学習問題を解決するための一般的なフレームワークを提供する。
我々は非滑らかな正規化問題を解くためにFedCanonアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-16T09:28:26Z) - Byzantine-resilient Federated Learning Employing Normalized Gradients on Non-IID Datasets [23.640506243685863]
実践的連合学習(FLNGA)では、悪意のある攻撃やデータ不均一性の存在が学習プロセスにバイアスをもたらすことが多い。
本稿では、アップロードされた局所勾配をアグリゲーションの前に正規化する正規化勾配単位(Fed-M)モデルを提案し、$mathcalO(pM)$を達成した。
論文 参考訳(メタデータ) (2024-08-18T16:50:39Z) - High-probability Convergence Bounds for Nonlinear Stochastic Gradient Descent Under Heavy-tailed Noise [59.25598762373543]
重み付き雑音の存在下でのストリーミングデータにおける学習の精度保証について検討した。
解析的に、与えられた問題に対する設定の選択に$ta$を使うことができることを実証する。
論文 参考訳(メタデータ) (2023-10-28T18:53:41Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Globally Convergent Accelerated Algorithms for Multilinear Sparse
Logistic Regression with $\ell_0$-constraints [2.323238724742687]
多重線形ロジスティック回帰は多次元データ解析の強力なツールである。
本稿では,$ell_0$-MLSRを解くために,アクセラレーションされた近位置換最小値MLSRモデルを提案する。
また、APALM$+$が一階臨界点に大域収束し、クルディ・ロジャシエヴィチ性質を用いて収束を確立することも示している。
論文 参考訳(メタデータ) (2023-09-17T11:05:08Z) - On the Size and Approximation Error of Distilled Sets [57.61696480305911]
カーネル・インジェクション・ポイント(Kernel Inducing Points)などのデータセット蒸留のカーネル・リッジ回帰に基づく手法について理論的に考察する。
我々は、RFF空間におけるその解が元のデータの解と一致するように、元の入力空間に小さな一組のインスタンスが存在することを証明した。
KRR溶液は、全入力データに最適化されたKRR溶液に対して近似を与えるこの蒸留されたインスタンスセットを用いて生成することができる。
論文 参考訳(メタデータ) (2023-05-23T14:37:43Z) - Improved Analysis of Score-based Generative Modeling: User-Friendly
Bounds under Minimal Smoothness Assumptions [9.953088581242845]
2次モーメントを持つ任意のデータ分布に対して,コンバージェンス保証と複雑性を提供する。
我々の結果は、対数共空性や機能的不等式を前提としない。
我々の理論解析は、異なる離散近似の比較を提供し、実際の離散化点の選択を導くかもしれない。
論文 参考訳(メタデータ) (2022-11-03T15:51:00Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
敵が損失関数を選択できるカテットガルバー2020onlineについて検討するが、一様にランダムな順序で提示される。
2020onlineアルゴリズムが最適境界を達成し,安定性を著しく向上することを示す。
論文 参考訳(メタデータ) (2021-06-29T09:48:46Z) - Robust Training in High Dimensions via Block Coordinate Geometric Median
Descent [69.47594803719333]
幾何学的中央値 (textGm) は、未破損データのロバストな推定を達成するための統計学における古典的な方法である。
本稿では,テキストscGmを一度に選択した座標ブロックにのみ適用することにより,スムーズな非テキスト問題に対して0.5の分解点を保持することができることを示す。
論文 参考訳(メタデータ) (2021-06-16T15:55:50Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
本稿では、収束保証付き非正則正規化器のためのワーキングセットアルゴリズムを提案する。
その結果,ブロックコーディネートや勾配ソルバの完全解法と比較して高い利得を示した。
論文 参考訳(メタデータ) (2020-06-24T07:40:31Z) - Byzantine-Resilient SGD in High Dimensions on Heterogeneous Data [10.965065178451104]
ビザンチン攻撃下での主作業者アーキテクチャにおける分散勾配降下(SGD)について検討した。
我々のアルゴリズムは、最大で$frac14$のビザンティン労働者を許容できる。
論文 参考訳(メタデータ) (2020-05-16T04:15:27Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
我々は,データ行列のスペクトル特性を利用して近似保証を改良する手法を開発した。
我々のアプローチは、特異値減衰の既知の速度を持つデータセットのバウンダリが大幅に向上する。
RBFパラメータを変更すれば,改良された境界線と多重発振曲線の両方を実データセット上で観測できることが示される。
論文 参考訳(メタデータ) (2020-02-21T00:43:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。