論文の概要: Cell Tracking in C. elegans with Cell Position Heatmap-Based Alignment and Pairwise Detection
- arxiv url: http://arxiv.org/abs/2403.13412v1
- Date: Wed, 20 Mar 2024 08:53:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 17:28:32.135728
- Title: Cell Tracking in C. elegans with Cell Position Heatmap-Based Alignment and Pairwise Detection
- Title(参考訳): 細胞位置熱マップに基づくアライメントとペアワイズ検出による線虫C. elegansの細胞追跡
- Authors: Kaito Shiku, Hiromitsu Shirai, Takeshi Ishihara, Ryoma Bise,
- Abstract要約: 生体内の3D細胞追跡は、生きた細胞画像解析において重要な役割を担っている。
細胞検出は、触覚細胞と低コントラスト画像によって連続したフレームに矛盾することが多い。
本稿では,これらの問題に対処する細胞追跡手法を提案する。
- 参考スコア(独自算出の注目度): 3.3998740964877463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D cell tracking in a living organism has a crucial role in live cell image analysis. Cell tracking in C. elegans has two difficulties. First, cell migration in a consecutive frame is large since they move their head during scanning. Second, cell detection is often inconsistent in consecutive frames due to touching cells and low-contrast images, and these inconsistent detections affect the tracking performance worse. In this paper, we propose a cell tracking method to address these issues, which has two main contributions. First, we introduce cell position heatmap-based non-rigid alignment with test-time fine-tuning, which can warp the detected points to near the positions at the next frame. Second, we propose a pairwise detection method, which uses the information of detection results at the previous frame for detecting cells at the current frame. The experimental results demonstrate the effectiveness of each module, and the proposed method achieved the best performance in comparison.
- Abstract(参考訳): 生体内の3D細胞追跡は、生きた細胞画像解析において重要な役割を担っている。
線虫C. elegansの細胞追跡には2つの困難がある。
まず、連続するフレーム内の細胞移動は、スキャン中に頭を動かすので大きい。
第2に、タッチセルや低コントラスト画像による連続したフレーム内でのセル検出の不整合がよくあり、これらの不整合検出がトラッキング性能に悪影響を及ぼす。
本稿では,これらの問題に対処する細胞追跡手法を提案する。
まず, セル位置の熱マップに基づく非剛性アライメントとテスト時間細調整を導入し, 検出した点を次のフレームの位置付近にワープする。
次に、前フレームにおける検出結果の情報を用いて、現在のフレームにおけるセルを検出するペアワイズ検出手法を提案する。
実験の結果,各モジュールの有効性が示され,提案手法は比較して最高の性能を示した。
関連論文リスト
- Cell as Point: One-Stage Framework for Efficient Cell Tracking [54.19259129722988]
本稿では,一段階の効率的なセルトラッキングを実現するために,新しいエンドツーエンドCAPフレームワークを提案する。
CAPは検出またはセグメンテーション段階を放棄し、細胞点の軌跡間の相関を利用して細胞を共同で追跡することでプロセスを単純化する。
Capは強力なセルトラッキング性能を示し、既存の方法の10倍から55倍の効率を示している。
論文 参考訳(メタデータ) (2024-11-22T10:16:35Z) - Trackastra: Transformer-based cell tracking for live-cell microscopy [0.0]
Trackastraは、単純なトランスフォーマーアーキテクチャを使って、細胞同士の相互関連を学習する汎用的な細胞追跡手法である。
我々の追跡手法は、高度に調整された最先端の細胞追跡アルゴリズムに匹敵する性能を示す。
論文 参考訳(メタデータ) (2024-05-24T16:44:22Z) - Solution for Point Tracking Task of ICCV 1st Perception Test Challenge 2023 [50.910598799408326]
Tracking Any Point (TAP) タスクは、ビデオを通じて任意の物理的表面を追跡する。
既存のいくつかのアプローチは、スムーズな運動軌跡を得るための時間的関係を考慮し、TAPを探索してきた。
我々は,静的カメラが撮影したビデオの静的点追跡の修正に焦点を当てた,信頼度の高い静的点付きTAP(TAPIR+)を提案する。
論文 参考訳(メタデータ) (2024-03-26T13:50:39Z) - Tracking by Associating Clips [110.08925274049409]
本稿では,オブジェクト関連をクリップワイドマッチングとして扱う方法を検討する。
我々の新しい視点では、1つの長いビデオシーケンスを複数のショートクリップとみなし、そのトラックはクリップ内とクリップ間の両方で実行される。
この新しい手法の利点は2つある。まず、ビデオチャンキングによって中断フレームをバイパスできるため、エラーの蓄積や伝播の追跡に頑健である。
次に、クリップワイドマッチング中に複数のフレーム情報を集約し、現在のフレームワイドマッチングよりも高精度な長距離トラックアソシエーションを実現する。
論文 参考訳(メタデータ) (2022-12-20T10:33:17Z) - Cell tracking for live-cell microscopy using an activity-prioritized
assignment strategy [0.9134244356393666]
細胞追跡は、分裂パターンや伸長率などの単一細胞の特徴を決定するために、ライブセルイメージングにおいて必須のツールである。
微生物のライブ細胞実験では、細胞は時間とともに成長し、移動し、分裂し、単層構造に密に詰め込まれた細胞コロニーを形成する。
そこで本研究では, 成長する細胞に近接する活性優先の細胞追跡手法と, 母細胞の分裂を娘に割り当てる解法とから, 高速優先の細胞追跡手法を提案する。
論文 参考訳(メタデータ) (2022-10-20T17:40:31Z) - Active Gaze Control for Foveal Scene Exploration [124.11737060344052]
本研究では,葉型カメラを用いた人間とロボットが現場を探索する方法をエミュレートする手法を提案する。
提案手法は,同数の視線シフトに対してF1スコアを2~3ポイント増加させる。
論文 参考訳(メタデータ) (2022-08-24T14:59:28Z) - Deep Learning Enabled Time-Lapse 3D Cell Analysis [7.094247258573337]
本稿では, タイムラプスな3Dセル解析手法を提案する。
そこで我々は,細胞下の特徴を正確に局所化し,定量的に分析する問題を考察した。
コードはGithubで入手でき、このメソッドはBisQueポータル経由でサービスとして利用できる。
論文 参考訳(メタデータ) (2022-08-17T00:07:25Z) - AttentionNAS: Spatiotemporal Attention Cell Search for Video
Classification [86.64702967379709]
本稿では,時間的注意のための新しい検索空間を提案する。これにより,検索アルゴリズムはセルの様々な設計選択を柔軟に探索することができる。
検出されたアテンションセルは既存のバックボーンネットワーク(例えばI3DやS3D)にシームレスに挿入することができ、Kinetics-600とMiTのデータセットでビデオの精度を2%以上改善することができる。
論文 参考訳(メタデータ) (2020-07-23T14:30:05Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
顕微鏡画像における触覚細胞のセグメンテーション法を提案する。
距離マップにインスパイアされた新しい細胞境界の表現を用いることで, 触覚細胞だけでなく, 近接細胞をトレーニングプロセスで利用することができる。
この表現は、特にアノテーションエラーに対して堅牢であり、未表現または未含の細胞型を含むトレーニングデータに含まれる顕微鏡画像のセグメンテーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2020-04-03T11:55:28Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z) - MPM: Joint Representation of Motion and Position Map for Cell Tracking [10.463365653675694]
本稿では,検出と関連性の両方を共同で表現する動きと位置のマップ(MPM)を提案する。
セルが検出されると、対応する動きの流れが常に得られるようにコヒーレンスを保証する。
密集環境における多目的追跡のための単純だが強力な手法である。
論文 参考訳(メタデータ) (2020-02-25T09:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。