On Strong Converse Theorems for Quantum Hypothesis Testing and Channel Coding
- URL: http://arxiv.org/abs/2403.13584v1
- Date: Wed, 20 Mar 2024 13:34:23 GMT
- Title: On Strong Converse Theorems for Quantum Hypothesis Testing and Channel Coding
- Authors: Hao-Chung Cheng, Li Gao,
- Abstract summary: Strong converse theorems refer to the study of impossibility results in information theory.
Mosonyi and Ogawa established a one-shot strong converse bound for quantum hypothesis testing.
We show that the variational expression of measured R'enyi divergences is a direct consequence of H"older's inequality.
- Score: 16.207627554776916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Strong converse theorems refer to the study of impossibility results in information theory. In particular, Mosonyi and Ogawa established a one-shot strong converse bound for quantum hypothesis testing [Comm. Math. Phys, 334(3), 2014], which servers as a primitive tool for establishing a variety of tight strong converse theorems in quantum information theory. In this short note, we demonstrate an alternative one-line proof for this bound via the variational expression of measured R\'enyi divergences [Lett. Math. Phys, 107(12), 2017]. Then, we show that the variational expression is a direct consequence of H\"older's inequality.
Related papers
- Hidden variable theory for non-relativistic QED: the critical role of selection rules [0.0]
We propose a hidden variable theory compatible with non-relativistic quantum electrodynamics.
Our approach introduces logical variables to describe propositions about the occupation of stationary states.
It successfully describes the essential properties of individual trials.
arXiv Detail & Related papers (2024-10-23T23:25:53Z) - A no-go theorem for sequential and retro-causal hidden-variable theories based on computational complexity [0.0]
Bell's no-go theorem requires a theory to model quantum correlation-at-a-distance phenomena.
If a theory is compatible with quantum mechanics, then the problems of solving its mathematical models must be as hard as calculating the output of quantum circuits.
I show that these classes fail to cover the computational complexity of sampling from quantum circuits.
The result represents a no-go theorem that rules out a large family of sequential and post-selection-based theories.
arXiv Detail & Related papers (2024-09-18T08:19:58Z) - Another quantum version of Sanov theorem [53.64687146666141]
We study how to extend Sanov theorem to the quantum setting.
We propose another quantum version of Sanov theorem by considering the quantum analog of the empirical distribution.
arXiv Detail & Related papers (2024-07-26T07:46:30Z) - Machine Learning of the Prime Distribution [49.84018914962972]
We provide a theoretical argument explaining the experimental observations of Yang-Hui He about the learnability of primes.
We also posit that the ErdHos-Kac law would very unlikely be discovered by current machine learning techniques.
arXiv Detail & Related papers (2024-03-19T09:47:54Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Generalized Gleason theorem and finite amount of information for the
context [0.0]
Quantum processes cannot be reduced to classical processes without specifying the context in the description of a measurement procedure.
We consider a class of hidden variable theories by assuming that the amount of information about the measurement context is finite.
arXiv Detail & Related papers (2022-06-23T16:55:50Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - Theorems motivated by foundations of quantum mechanics and some of their
applications [0.0]
This paper provides theorems aimed at shedding light on issues in the foundations of quantum mechanics.
theorems can be used to propose new interpretations to the theory, or to better understand, evaluate and improve current interpretations.
arXiv Detail & Related papers (2022-02-02T21:55:57Z) - A refinement of Reznick's Positivstellensatz with applications to
quantum information theory [72.8349503901712]
In Hilbert's 17th problem Artin showed that any positive definite in several variables can be written as the quotient of two sums of squares.
Reznick showed that the denominator in Artin's result can always be chosen as an $N$-th power of the squared norm of the variables.
arXiv Detail & Related papers (2019-09-04T11:46:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.