A no-go theorem for sequential and retro-causal hidden-variable theories based on computational complexity
- URL: http://arxiv.org/abs/2409.11792v1
- Date: Wed, 18 Sep 2024 08:19:58 GMT
- Title: A no-go theorem for sequential and retro-causal hidden-variable theories based on computational complexity
- Authors: Doriano Brogioli,
- Abstract summary: Bell's no-go theorem requires a theory to model quantum correlation-at-a-distance phenomena.
If a theory is compatible with quantum mechanics, then the problems of solving its mathematical models must be as hard as calculating the output of quantum circuits.
I show that these classes fail to cover the computational complexity of sampling from quantum circuits.
The result represents a no-go theorem that rules out a large family of sequential and post-selection-based theories.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The celebrated Bell's no-go theorem rules out the hidden-variable theories falling in the hypothesis of locality and causality, by requiring the theory to model the quantum correlation-at-a-distance phenomena. Here I develop an independent no-go theorem, by inspecting the ability of a theory to model quantum \emph{circuits}. If a theory is compatible with quantum mechanics, then the problems of solving its mathematical models must be as hard as calculating the output of quantum circuits, i.e., as hard as quantum computing. Rigorously, I provide complexity classes capturing the idea of sampling from sequential (causal) theories and from post-selection-based (retro-causal) theories; I show that these classes fail to cover the computational complexity of sampling from quantum circuits. The result is based on widely accepted conjectures on the superiority of quantum computers over classical ones. The result represents a no-go theorem that rules out a large family of sequential and post-selection-based theories. I discuss the hypothesis of the no-go theorem and the possible ways to circumvent them. In particular, I discuss the Schulman model and its extensions, which is retro-causal and is able to model quantum correlation-at-a-distance phenomena: I provides clues suggesting that it escapes the hypothesis of the no-go theorem.
Related papers
- Lecture Notes on Quantum Electrical Circuits [49.86749884231445]
Theory of quantum electrical circuits goes under the name of circuit quantum electrodynamics or circuit-QED.
The goal of the theory is to provide a quantum description of the most relevant degrees of freedom.
These lecture notes aim at giving a pedagogical overview of this subject for theoretically-oriented Master or PhD students in physics and electrical engineering.
arXiv Detail & Related papers (2023-12-08T19:26:34Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Advantages of quantum mechanics in the estimation theory [0.0]
In quantum theory, the situation with operators is different due to its non-commutativity nature.
We formulate, with complete generality, the quantum estimation theory for Gaussian states in terms of their first and second moments.
arXiv Detail & Related papers (2022-11-13T18:03:27Z) - Testing real quantum theory in an optical quantum network [1.6720048283946962]
We show that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios.
We disproving real quantum theory as a universal physical theory.
arXiv Detail & Related papers (2021-11-30T05:09:36Z) - Bell nonlocality in networks [62.997667081978825]
Bell's theorem proves that quantum theory is inconsistent with local physical models.
In the last decade, the investigation of nonlocality has moved beyond Bell's theorem to consider more sophisticated experiments.
This review discusses the main concepts, methods, results and future challenges in the emerging topic of Bell nonlocality in networks.
arXiv Detail & Related papers (2021-04-21T18:00:48Z) - Resource theory of imaginarity: Quantification and state conversion [48.7576911714538]
Resource theory of imaginarity has been introduced, allowing for a systematic study of complex numbers in quantum mechanics and quantum information theory.
We investigate imaginarity quantification, focusing on the geometric imaginarity and the robustness of imaginarity, and apply these tools to the state conversion problem in imaginarity theory.
Our study reveals the significance of complex numbers in quantum physics, and proves that imaginarity is a resource in optical experiments.
arXiv Detail & Related papers (2021-03-02T15:30:27Z) - Probabilistic Theories and Reconstructions of Quantum Theory (Les
Houches 2019 lecture notes) [0.0]
These lecture notes provide a basic introduction to the framework of generalized probabilistic theories (GPTs)
I present two conceivable phenomena beyond quantum: superstrong nonlocality and higher-order interference.
I summarize a reconstruction of quantum theory from the principles of Tomographic Locality, Continuous Reversibility, and the Subspace Axiom.
arXiv Detail & Related papers (2020-11-02T20:03:13Z) - Towards correlation self-testing of quantum theory in the adaptive
Clauser-Horne-Shimony-Holt game [1.0878040851638]
Correlation self-testing of a theory addresses the question of whether we can identify the set of correlations realisable in a theory from its performance in a particular information processing task.
This is the first step towards a general solution that could rule out all theories in which the set of realisable correlations does not coincide with the quantum set.
arXiv Detail & Related papers (2020-09-10T18:04:13Z) - Characterization of the probabilistic models that can be embedded in
quantum theory [0.0]
We show that only classical and standard quantum theory with superselection rules can arise from a physical decoherence map.
Our results have significant consequences for some experimental tests of quantum theory, by clarifying how they could (or could not) falsify it.
arXiv Detail & Related papers (2020-04-13T18:09:39Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.