H-vmunet: High-order Vision Mamba UNet for Medical Image Segmentation
- URL: http://arxiv.org/abs/2403.13642v1
- Date: Wed, 20 Mar 2024 14:49:52 GMT
- Title: H-vmunet: High-order Vision Mamba UNet for Medical Image Segmentation
- Authors: Renkai Wu, Yinghao Liu, Pengchen Liang, Qing Chang,
- Abstract summary: We propose a High-order Vision Mamba UNet (H-vmunet) for medical image segmentation.
The proposed High-order 2D-selective-scan (H-SS2D) progressively reduces the introduction of redundant information.
In addition, the proposed Local-SS2D module improves the learning ability of local features of SS2D at each order of interaction.
- Score: 2.0555786400946134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of medical image segmentation, variant models based on Convolutional Neural Networks (CNNs) and Visual Transformers (ViTs) as the base modules have been very widely developed and applied. However, CNNs are often limited in their ability to deal with long sequences of information, while the low sensitivity of ViTs to local feature information and the problem of secondary computational complexity limit their development. Recently, the emergence of state-space models (SSMs), especially 2D-selective-scan (SS2D), has had an impact on the longtime dominance of traditional CNNs and ViTs as the foundational modules of visual neural networks. In this paper, we extend the adaptability of SS2D by proposing a High-order Vision Mamba UNet (H-vmunet) for medical image segmentation. Among them, the proposed High-order 2D-selective-scan (H-SS2D) progressively reduces the introduction of redundant information during SS2D operations through higher-order interactions. In addition, the proposed Local-SS2D module improves the learning ability of local features of SS2D at each order of interaction. We conducted comparison and ablation experiments on three publicly available medical image datasets (ISIC2017, Spleen, and CVC-ClinicDB), and the results all demonstrate the strong competitiveness of H-vmunet in medical image segmentation tasks. The code is available from https://github.com/wurenkai/H-vmunet .
Related papers
- DAMamba: Vision State Space Model with Dynamic Adaptive Scan [51.81060691414399]
State space models (SSMs) have recently garnered significant attention in computer vision.
We propose Dynamic Adaptive Scan (DAS), a data-driven method that adaptively allocates scanning orders and regions.
Based on DAS, we propose the vision backbone DAMamba, which significantly outperforms current state-of-the-art vision Mamba models in vision tasks.
arXiv Detail & Related papers (2025-02-18T08:12:47Z) - VM-UNET-V2 Rethinking Vision Mamba UNet for Medical Image Segmentation [8.278068663433261]
We propose Vison Mamba-UNetV2, inspired by Mamba architecture, to capture contextual information in images.
VM-UNetV2 exhibits competitive performance in medical image segmentation tasks.
We conduct comprehensive experiments on the ISIC17, ISIC18, CVC-300, CVC-ClinicDB, Kvasir CVC-ColonDB and ETIS-LaribPolypDB public datasets.
arXiv Detail & Related papers (2024-03-14T08:12:39Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - nnMamba: 3D Biomedical Image Segmentation, Classification and Landmark
Detection with State Space Model [24.955052600683423]
In this paper, we introduce nnMamba, a novel architecture that integrates the strengths of CNNs and the advanced long-range modeling capabilities of State Space Sequence Models (SSMs)
Experiments on 6 datasets demonstrate nnMamba's superiority over state-of-the-art methods in a suite of challenging tasks, including 3D image segmentation, classification, and landmark detection.
arXiv Detail & Related papers (2024-02-05T21:28:47Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
We propose a new 2D-based model dubbed Slice SHift UNet which encodes three-dimensional features at 2D CNN's complexity.
More precisely multi-view features are collaboratively learned by performing 2D convolutions along the three planes of a volume.
The effectiveness of our approach is validated in Multi-Modality Abdominal Multi-Organ axis (AMOS) and Multi-Atlas Labeling Beyond the Cranial Vault (BTCV) datasets.
arXiv Detail & Related papers (2023-07-24T14:53:23Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Semi-Supervised Hybrid Spine Network for Segmentation of Spine MR Images [14.190504802866288]
We propose a two-stage algorithm, named semi-supervised hybrid spine network (SSHSNet) to achieve simultaneous vertebral bodies (VBs) and intervertebral discs (IVDs) segmentation.
In the first stage, we constructed a 2D semi-supervised DeepLabv3+ by using cross pseudo supervision to obtain intra-slice features and coarse segmentation.
In the second stage, a 3D full-resolution patch-based DeepLabv3+ was built to extract inter-slice information.
Results show that the proposed method has great potential in dealing with the data imbalance problem
arXiv Detail & Related papers (2022-03-23T02:57:14Z) - AlignTransformer: Hierarchical Alignment of Visual Regions and Disease
Tags for Medical Report Generation [50.21065317817769]
We propose an AlignTransformer framework, which includes the Align Hierarchical Attention (AHA) and the Multi-Grained Transformer (MGT) modules.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that the AlignTransformer can achieve results competitive with state-of-the-art methods on the two datasets.
arXiv Detail & Related papers (2022-03-18T13:43:53Z) - Visual Attention Network [90.0753726786985]
We propose a novel large kernel attention (LKA) module to enable self-adaptive and long-range correlations in self-attention.
We also introduce a novel neural network based on LKA, namely Visual Attention Network (VAN)
VAN outperforms the state-of-the-art vision transformers and convolutional neural networks with a large margin in extensive experiments.
arXiv Detail & Related papers (2022-02-20T06:35:18Z) - Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors
in MRI Images [7.334185314342017]
We propose a novel segmentation model termed Swin UNEt TRansformers (Swin UNETR)
The model extracts features at five different resolutions by utilizing shifted windows for computing self-attention.
We have participated in BraTS 2021 segmentation challenge, and our proposed model ranks among the top-performing approaches in the validation phase.
arXiv Detail & Related papers (2022-01-04T18:01:34Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
We introduce a novel neural network for building image generators (decoders) and apply it to variational autoencoders (VAEs)
In our spatial dependency networks (SDNs), feature maps at each level of a deep neural net are computed in a spatially coherent way.
We show that augmenting the decoder of a hierarchical VAE by spatial dependency layers considerably improves density estimation.
arXiv Detail & Related papers (2021-03-16T07:01:08Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.