Network bottlenecks and task structure control the evolution of interpretable learning rules in a foraging agent
- URL: http://arxiv.org/abs/2403.13649v1
- Date: Wed, 20 Mar 2024 14:57:02 GMT
- Title: Network bottlenecks and task structure control the evolution of interpretable learning rules in a foraging agent
- Authors: Emmanouil Giannakakis, Sina Khajehabdollahi, Anna Levina,
- Abstract summary: We study meta-learning via evolutionary optimization of simple reward-modulated plasticity rules in embodied agents.
We show that unconstrained meta-learning leads to the emergence of diverse plasticity rules.
Our findings indicate that the meta-learning of plasticity rules is very sensitive to various parameters, with this sensitivity possibly reflected in the learning rules found in biological networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Developing reliable mechanisms for continuous local learning is a central challenge faced by biological and artificial systems. Yet, how the environmental factors and structural constraints on the learning network influence the optimal plasticity mechanisms remains obscure even for simple settings. To elucidate these dependencies, we study meta-learning via evolutionary optimization of simple reward-modulated plasticity rules in embodied agents solving a foraging task. We show that unconstrained meta-learning leads to the emergence of diverse plasticity rules. However, regularization and bottlenecks to the model help reduce this variability, resulting in interpretable rules. Our findings indicate that the meta-learning of plasticity rules is very sensitive to various parameters, with this sensitivity possibly reflected in the learning rules found in biological networks. When included in models, these dependencies can be used to discover potential objective functions and details of biological learning via comparisons with experimental observations.
Related papers
- Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
We show that loss of plasticity can be decomposed into multiple independent mechanisms.
We show that a combination of layer normalization and weight decay is highly effective at maintaining plasticity in a variety of synthetic nonstationary learning tasks.
arXiv Detail & Related papers (2024-02-29T00:02:33Z) - Interpretable Meta-Learning of Physical Systems [4.343110120255532]
Recent meta-learning methods rely on black-box neural networks, resulting in high computational costs and limited interpretability.
We argue that multi-environment generalization can be achieved using a simpler learning model, with an affine structure with respect to the learning task.
We demonstrate the competitive generalization performance and the low computational cost of our method by comparing it to state-of-the-art algorithms on physical systems.
arXiv Detail & Related papers (2023-12-01T10:18:50Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
Continual learning aims to empower artificial intelligence with strong adaptability to the real world.
Existing advances mainly focus on preserving memory stability to overcome catastrophic forgetting.
We propose a generic approach that appropriately attenuates old memories in parameter distributions to improve learning plasticity.
arXiv Detail & Related papers (2023-08-29T02:43:58Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Understanding plasticity in neural networks [41.79540750236036]
Plasticity is the ability of a neural network to quickly change its predictions in response to new information.
Deep neural networks are known to lose plasticity over the course of training even in relatively simple learning problems.
arXiv Detail & Related papers (2023-03-02T18:47:51Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
We study interpretability of compact neural policies through the lens of disentangled representation.
We leverage decision trees to obtain factors of variation for disentanglement in robot learning.
We introduce interpretability metrics that measure disentanglement of learned neural dynamics.
arXiv Detail & Related papers (2022-10-13T01:10:41Z) - A Spiking Neuron Synaptic Plasticity Model Optimized for Unsupervised
Learning [0.0]
Spiking neural networks (SNN) are considered as a perspective basis for performing all kinds of learning tasks - unsupervised, supervised and reinforcement learning.
Learning in SNN is implemented through synaptic plasticity - the rules which determine dynamics of synaptic weights depending usually on activity of the pre- and post-synaptic neurons.
arXiv Detail & Related papers (2021-11-12T15:26:52Z) - Evolving Neuronal Plasticity Rules using Cartesian Genetic Programming [1.1980325577555802]
We employ genetic programming to evolve biologically plausible human-interpretable plasticity rules.
We demonstrate that the evolved rules perform competitively with known hand-designed solutions.
arXiv Detail & Related papers (2021-02-08T16:17:15Z) - Identifying Learning Rules From Neural Network Observables [26.96375335939315]
We show that different classes of learning rules can be separated solely on the basis of aggregate statistics of the weights, activations, or instantaneous layer-wise activity changes.
Our results suggest that activation patterns, available from electrophysiological recordings of post-synaptic activities, may provide a good basis on which to identify learning rules.
arXiv Detail & Related papers (2020-10-22T14:36:54Z) - Ecological Reinforcement Learning [76.9893572776141]
We study the kinds of environment properties that can make learning under such conditions easier.
understanding how properties of the environment impact the performance of reinforcement learning agents can help us to structure our tasks in ways that make learning tractable.
arXiv Detail & Related papers (2020-06-22T17:55:03Z) - Guided Variational Autoencoder for Disentanglement Learning [79.02010588207416]
We propose an algorithm, guided variational autoencoder (Guided-VAE), that is able to learn a controllable generative model by performing latent representation disentanglement learning.
We design an unsupervised strategy and a supervised strategy in Guided-VAE and observe enhanced modeling and controlling capability over the vanilla VAE.
arXiv Detail & Related papers (2020-04-02T20:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.