論文の概要: AUD-TGN: Advancing Action Unit Detection with Temporal Convolution and GPT-2 in Wild Audiovisual Contexts
- arxiv url: http://arxiv.org/abs/2403.13678v1
- Date: Wed, 20 Mar 2024 15:37:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 16:28:26.783519
- Title: AUD-TGN: Advancing Action Unit Detection with Temporal Convolution and GPT-2 in Wild Audiovisual Contexts
- Title(参考訳): AUD-TGN:野生聴覚環境における時間的畳み込みとGPT-2による行動単位検出
- Authors: Jun Yu, Zerui Zhang, Zhihong Wei, Gongpeng Zhao, Zhongpeng Cai, Yongqi Wang, Guochen Xie, Jichao Zhu, Wangyuan Zhu,
- Abstract要約: 音声・視覚的マルチモーダルデータを利用した新しい手法を提案する。
本手法は,Mel Frequency Cepstral Coefficients (MFCC) とLog-Mel Spectrogram を,事前学習したVGGishネットワークと共に利用することにより,音声特徴抽出を強化する。
本手法は,データの時間的・文脈的ニュアンスを理解することにより,AU検出の精度を著しく向上させ,複雑なシナリオの理解における重要な進歩を示す。
- 参考スコア(独自算出の注目度): 8.809586885539002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging the synergy of both audio data and visual data is essential for understanding human emotions and behaviors, especially in in-the-wild setting. Traditional methods for integrating such multimodal information often stumble, leading to less-than-ideal outcomes in the task of facial action unit detection. To overcome these shortcomings, we propose a novel approach utilizing audio-visual multimodal data. This method enhances audio feature extraction by leveraging Mel Frequency Cepstral Coefficients (MFCC) and Log-Mel spectrogram features alongside a pre-trained VGGish network. Moreover, this paper adaptively captures fusion features across modalities by modeling the temporal relationships, and ultilizes a pre-trained GPT-2 model for sophisticated context-aware fusion of multimodal information. Our method notably improves the accuracy of AU detection by understanding the temporal and contextual nuances of the data, showcasing significant advancements in the comprehension of intricate scenarios. These findings underscore the potential of integrating temporal dynamics and contextual interpretation, paving the way for future research endeavors.
- Abstract(参考訳): 音声データと視覚データの相乗効果を活用することは人間の感情や行動を理解するのに不可欠である。
このようなマルチモーダルな情報を統合するための従来の手法は、しばしば混乱し、顔行動単位検出のタスクにおいて、理想的ではない結果をもたらす。
このような欠点を克服するために,音声・視覚的マルチモーダルデータを利用した新しい手法を提案する。
本手法は,Mel Frequency Cepstral Coefficients (MFCC) とLog-Mel Spectrogram を,事前学習したVGGishネットワークと共に利用することにより,音声特徴抽出を強化する。
さらに,時間的関係をモデル化することにより,モーダル間の融合特性を適応的に把握し,マルチモーダル情報の高度化を目的とした事前学習GPT-2モデルを構築する。
本手法は,データの時間的・文脈的ニュアンスを理解することにより,AU検出の精度を著しく向上させ,複雑なシナリオの理解における重要な進歩を示す。
これらの知見は、時間力学と文脈解釈を統合する可能性を強調し、将来の研究への道を開いた。
関連論文リスト
- Sequential Contrastive Audio-Visual Learning [12.848371604063168]
逐次距離を用いた非集約表現空間に基づく実例を対比した逐次コントラスト音声視覚学習(SCAV)を提案する。
VGGSoundとMusicのデータセットによる検索実験は、SCAVの有効性を実証している。
また、SCAVでトレーニングしたモデルは、検索に使用されるメトリックに関して高い柔軟性を示し、効率-精度トレードオフのスペクトル上で動作可能であることを示す。
論文 参考訳(メタデータ) (2024-07-08T09:45:20Z) - Multimodal Fusion Method with Spatiotemporal Sequences and Relationship Learning for Valence-Arousal Estimation [9.93719767430551]
本稿では,ABA6コンペティションにおけるVA(Valence-Arousal)推定タスクに対するアプローチを提案する。
映像フレームと音声セグメントを前処理して視覚的・音声的特徴を抽出する包括的モデルを考案した。
我々は、Transformerエンコーダ構造を用いて長距離依存を学習し、モデルの性能と一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-03-19T04:25:54Z) - Unimodal Multi-Task Fusion for Emotional Mimicry Intensity Prediction [6.1058750788332325]
第6回ワークショップおよび感情行動分析コンペティションの一環として,情緒的不安度(EMI)を評価するための新しい方法論を紹介した。
我々の手法は、広範囲なポッドキャストデータセットで事前トレーニングされたWav2Vec 2.0アーキテクチャを活用している。
我々は,個々の特徴をグローバル平均ベクトルと組み合わせた融合手法を用いて特徴抽出プロセスを洗練する。
論文 参考訳(メタデータ) (2024-03-18T15:32:02Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCueは、HOI検出における視覚的特徴抽出を改善するための新しいアプローチである。
コンテクストキューをインスタンスと相互作用検出器の両方に統合するマルチトウワーアーキテクチャを用いたトランスフォーマーベースの特徴抽出モジュールを開発した。
論文 参考訳(メタデータ) (2023-11-26T09:11:32Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Make-An-Audio 2: Temporal-Enhanced Text-to-Audio Generation [72.7915031238824]
大規模な拡散モデルは、テキスト・トゥ・オーディオ(T2A)合成タスクで成功している。
意味的不一致や時間的一貫性の低下といった共通の問題に悩まされることが多い。
我々は,Make-an-Audioの成功に基づいて,潜伏拡散に基づくT2A法であるMake-an-Audio 2を提案する。
論文 参考訳(メタデータ) (2023-05-29T10:41:28Z) - Deep Spectro-temporal Artifacts for Detecting Synthesized Speech [57.42110898920759]
本稿では,トラック1(低品質フェイク音声検出)とトラック2(部分フェイク音声検出)の総合評価を行う。
本稿では, 原時間信号, スペクトル特性, 深層埋没特性を用いて, 分光時相アーティファクトを検出した。
我々はそれぞれ1番線と2番線で4位と5位にランクインした。
論文 参考訳(メタデータ) (2022-10-11T08:31:30Z) - DeepSafety:Multi-level Audio-Text Feature Extraction and Fusion Approach
for Violence Detection in Conversations [2.8038382295783943]
会話における言葉と発声の手がかりの選択は、個人の安全と犯罪防止のための自然言語データの不足した豊富な情報源を示す。
本稿では,会話における暴力行為の程度を検出するために,多段階の特徴を抽出・融合する新たな情報融合手法を提案する。
論文 参考訳(メタデータ) (2022-06-23T16:45:50Z) - End-to-End Active Speaker Detection [58.7097258722291]
本稿では,特徴学習と文脈予測を共同で学習するエンド・ツー・エンドのトレーニングネットワークを提案する。
また、時間間グラフニューラルネットワーク(iGNN)ブロックを導入し、ASD問題における主要なコンテキストのソースに応じてメッセージパッシングを分割する。
実験により、iGNNブロックからの集約された特徴はASDにより適しており、その結果、最先端のアートパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2022-03-27T08:55:28Z) - Multi-Modal Perception Attention Network with Self-Supervised Learning
for Audio-Visual Speaker Tracking [18.225204270240734]
音声と視覚の両方を用いた話者追跡のための新しいマルチモーダル・パーセプション・トラッカー(MPT)を提案する。
MPTは標準データセットと排他データセットでそれぞれ98.6%と78.3%のトラッキング精度を達成した。
論文 参考訳(メタデータ) (2021-12-14T14:14:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。