Step-Calibrated Diffusion for Biomedical Optical Image Restoration
- URL: http://arxiv.org/abs/2403.13680v4
- Date: Tue, 17 Dec 2024 23:17:00 GMT
- Title: Step-Calibrated Diffusion for Biomedical Optical Image Restoration
- Authors: Yiwei Lyu, Sung Jik Cha, Cheng Jiang, Asadur Chowdury, Xinhai Hou, Edward Harake, Akhil Kondepudi, Christian Freudiger, Honglak Lee, Todd C. Hollon,
- Abstract summary: Restorative Step-Calibrated Diffusion (RSCD) is an unpaired diffusion-based image restoration method.
RSCD outperforms other widely used unpaired image restoration methods on both image quality and perceptual evaluation.
RSCD improves performance on downstream clinical imaging tasks, including automated brain tumor diagnosis and deep tissue imaging.
- Score: 47.191704042917394
- License:
- Abstract: High-quality, high-resolution medical imaging is essential for clinical care. Raman-based biomedical optical imaging uses non-ionizing infrared radiation to evaluate human tissues in real time and is used for early cancer detection, brain tumor diagnosis, and intraoperative tissue analysis. Unfortunately, optical imaging is vulnerable to image degradation due to laser scattering and absorption, which can result in diagnostic errors and misguided treatment. Restoration of optical images is a challenging computer vision task because the sources of image degradation are multi-factorial, stochastic, and tissue-dependent, preventing a straightforward method to obtain paired low-quality/high-quality data. Here, we present Restorative Step-Calibrated Diffusion (RSCD), an unpaired diffusion-based image restoration method that uses a step calibrator model to dynamically determine the number of steps required to complete the reverse diffusion process for image restoration. RSCD outperforms other widely used unpaired image restoration methods on both image quality and perceptual evaluation metrics for restoring optical images. Medical imaging experts consistently prefer images restored using RSCD in blinded comparison experiments and report minimal to no hallucinations. Finally, we show that RSCD improves performance on downstream clinical imaging tasks, including automated brain tumor diagnosis and deep tissue imaging. Our code is available at https://github.com/MLNeurosurg/restorative_step-calibrated_diffusion.
Related papers
- Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - Low-Dose CT Image Enhancement Using Deep Learning [0.0]
It is preferable to use as low a dose of ionizing radiation as possible, particularly in computed tomography (CT) imaging systems.
A popular method for radiation dose reduction in CT imaging is known as the quarter-dose technique.
Recent and popular deep-learning approaches provide an intriguing possibility of image enhancement for low-dose artifacts.
arXiv Detail & Related papers (2023-10-31T08:34:33Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Multi-scale reconstruction of undersampled spectral-spatial OCT data for
coronary imaging using deep learning [1.8359410255568984]
Intravascular optical coherence tomography (IV OCT) has been considered as an optimal imagining system for the diagnosis and treatment of coronary artery disease (CAD)
There is a trade-off between high spatial resolution and fast scanning rate for coronary imaging.
We propose a viable spectral-spatial acquisition method that down-scales the sampling process in both spectral and spatial domain.
arXiv Detail & Related papers (2022-04-25T16:37:25Z) - RFormer: Transformer-based Generative Adversarial Network for Real
Fundus Image Restoration on A New Clinical Benchmark [8.109057397954537]
Ophthalmologists have used fundus images to screen and diagnose eye diseases.
Low-quality (LQ) degraded fundus images easily lead to uncertainty in clinical screening and generally increase the risk of misdiagnosis.
We propose a novel Transformer-based Generative Adversarial Network (RFormer) to restore the real degradation of clinical fundus images.
arXiv Detail & Related papers (2022-01-03T03:56:58Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.