Multi-scale reconstruction of undersampled spectral-spatial OCT data for
coronary imaging using deep learning
- URL: http://arxiv.org/abs/2204.11769v1
- Date: Mon, 25 Apr 2022 16:37:25 GMT
- Title: Multi-scale reconstruction of undersampled spectral-spatial OCT data for
coronary imaging using deep learning
- Authors: Xueshen Li, Shengting Cao, Hongshan Liu, Xinwen Yao, Brigitta C.
Brott, Silvio H. Litovsky, Xiaoyu Song, Yuye Ling, Yu Gan
- Abstract summary: Intravascular optical coherence tomography (IV OCT) has been considered as an optimal imagining system for the diagnosis and treatment of coronary artery disease (CAD)
There is a trade-off between high spatial resolution and fast scanning rate for coronary imaging.
We propose a viable spectral-spatial acquisition method that down-scales the sampling process in both spectral and spatial domain.
- Score: 1.8359410255568984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronary artery disease (CAD) is a cardiovascular condition with high
morbidity and mortality. Intravascular optical coherence tomography (IVOCT) has
been considered as an optimal imagining system for the diagnosis and treatment
of CAD. Constrained by Nyquist theorem, dense sampling in IVOCT attains high
resolving power to delineate cellular structures/ features. There is a
trade-off between high spatial resolution and fast scanning rate for coronary
imaging. In this paper, we propose a viable spectral-spatial acquisition method
that down-scales the sampling process in both spectral and spatial domain while
maintaining high quality in image reconstruction. The down-scaling schedule
boosts data acquisition speed without any hardware modifications. Additionally,
we propose a unified multi-scale reconstruction framework, namely Multiscale-
Spectral-Spatial-Magnification Network (MSSMN), to resolve highly down-scaled
(compressed) OCT images with flexible magnification factors. We incorporate the
proposed methods into Spectral Domain OCT (SD-OCT) imaging of human coronary
samples with clinical features such as stent and calcified lesions. Our
experimental results demonstrate that spectral-spatial downscaled data can be
better reconstructed than data that is downscaled solely in either spectral or
spatial domain. Moreover, we observe better reconstruction performance using
MSSMN than using existing reconstruction methods. Our acquisition method and
multi-scale reconstruction framework, in combination, may allow faster SD-OCT
inspection with high resolution during coronary intervention.
Related papers
- X-Recon: Learning-based Patient-specific High-Resolution CT Reconstruction from Orthogonal X-Ray Images [14.04604990570727]
X-Recon is a reconstruction network based on ortho-lateral chest X-ray images.
PTX-Seg is a zero-shot pneumothorax segmentation algorithm.
The reconstruction metrics achieved state-of-the-art performance in terms of several metrics including peak signal-to-noise ratio.
arXiv Detail & Related papers (2024-07-22T03:55:36Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Feature-oriented Deep Learning Framework for Pulmonary Cone-beam CT
(CBCT) Enhancement with Multi-task Customized Perceptual Loss [9.59233136691378]
Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy.
Recent deep learning-based CBCT enhancement methods have shown promising results in suppressing artifacts.
We propose a novel feature-oriented deep learning framework that translates low-quality CBCT images into high-quality CT-like imaging.
arXiv Detail & Related papers (2023-11-01T10:09:01Z) - Spectral Bandwidth Recovery of Optical Coherence Tomography Images using
Deep Learning [0.6990493129893112]
Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution.
Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data.
In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction.
arXiv Detail & Related papers (2023-01-02T02:18:32Z) - Unsupervised denoising for sparse multi-spectral computed tomography [2.969056717104372]
We investigate the suitability of learning-based improvements to the challenging task of obtaining high-quality reconstructions from sparse measurements for a 64-channel PCD-CT.
We propose an unsupervised denoising and artefact removal approach by exploiting different filter functions in the reconstruction and an explicit coupling of spectral channels with the nuclear norm.
arXiv Detail & Related papers (2022-11-02T14:36:24Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.