DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses
- URL: http://arxiv.org/abs/2403.13683v1
- Date: Wed, 20 Mar 2024 15:41:32 GMT
- Title: DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses
- Authors: Chen Zhao, Tong Zhang, Zheng Dang, Mathieu Salzmann,
- Abstract summary: Current approaches approximate the continuous pose representation with a large number of discrete pose hypotheses.
We present a Deep Voxel Matching Network (DVMNet) that eliminates the need for pose hypotheses and computes the relative object pose in a single pass.
Our method delivers more accurate relative pose estimates for novel objects at a lower computational cost compared to state-of-the-art methods.
- Score: 59.51874686414509
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Determining the relative pose of an object between two images is pivotal to the success of generalizable object pose estimation. Existing approaches typically approximate the continuous pose representation with a large number of discrete pose hypotheses, which incurs a computationally expensive process of scoring each hypothesis at test time. By contrast, we present a Deep Voxel Matching Network (DVMNet) that eliminates the need for pose hypotheses and computes the relative object pose in a single pass. To this end, we map the two input RGB images, reference and query, to their respective voxelized 3D representations. We then pass the resulting voxels through a pose estimation module, where the voxels are aligned and the pose is computed in an end-to-end fashion by solving a least-squares problem. To enhance robustness, we introduce a weighted closest voxel algorithm capable of mitigating the impact of noisy voxels. We conduct extensive experiments on the CO3D, LINEMOD, and Objaverse datasets, demonstrating that our method delivers more accurate relative pose estimates for novel objects at a lower computational cost compared to state-of-the-art methods. Our code is released at: https://github.com/sailor-z/DVMNet/.
Related papers
- ADen: Adaptive Density Representations for Sparse-view Camera Pose Estimation [17.097170273209333]
Recovering camera poses from a set of images is a foundational task in 3D computer vision.
Recent data-driven approaches aim to directly output camera poses, either through regressing the 6DoF camera poses or formulating rotation as a probability distribution.
We propose ADen to unify the two frameworks by employing a generator and a discriminator.
arXiv Detail & Related papers (2024-08-16T22:45:46Z) - 3D-Aware Hypothesis & Verification for Generalizable Relative Object
Pose Estimation [69.73691477825079]
We present a new hypothesis-and-verification framework to tackle the problem of generalizable object pose estimation.
To measure reliability, we introduce a 3D-aware verification that explicitly applies 3D transformations to the 3D object representations learned from the two input images.
arXiv Detail & Related papers (2023-10-05T13:34:07Z) - Diff-DOPE: Differentiable Deep Object Pose Estimation [29.703385848843414]
We introduce Diff-DOPE, a 6-DoF pose refiner that takes as input an image, a 3D textured model of an object, and an initial pose of the object.
The method uses differentiable rendering to update the object pose to minimize the visual error between the image and the projection of the model.
We show that this simple, yet effective, idea is able to achieve state-of-the-art results on pose estimation datasets.
arXiv Detail & Related papers (2023-09-30T18:52:57Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
We propose PoseMatcher, an accurate model free one-shot object pose estimator.
We create a new training pipeline for object to image matching based on a three-view system.
To enable PoseMatcher to attend to distinct input modalities, an image and a pointcloud, we introduce IO-Layer.
arXiv Detail & Related papers (2023-04-03T21:14:59Z) - DPODv2: Dense Correspondence-Based 6 DoF Pose Estimation [24.770767430749288]
We propose a 3 stage 6 DoF object detection method called DPODv2 (Dense Pose Object Detector)
We combine a 2D object detector with a dense correspondence estimation network and a multi-view pose refinement method to estimate a full 6 DoF pose.
DPODv2 achieves excellent results on all of them while still remaining fast and scalable independent of the used data modality and the type of training data.
arXiv Detail & Related papers (2022-07-06T16:48:56Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose
Estimation [76.31125154523056]
We present a discrete descriptor, which can represent the object surface densely.
We also propose a coarse to fine training strategy, which enables fine-grained correspondence prediction.
arXiv Detail & Related papers (2022-03-17T16:16:24Z) - Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose
Estimation [74.76155168705975]
Deep Bingham Networks (DBN) can handle pose-related uncertainties and ambiguities arising in almost all real life applications concerning 3D data.
DBN extends the state of the art direct pose regression networks by (i) a multi-hypotheses prediction head which can yield different distribution modes.
We propose new training strategies so as to avoid mode or posterior collapse during training and to improve numerical stability.
arXiv Detail & Related papers (2020-12-20T19:20:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.