Robust 6D Object Pose Estimation by Learning RGB-D Features
- URL: http://arxiv.org/abs/2003.00188v2
- Date: Mon, 9 Mar 2020 14:25:38 GMT
- Title: Robust 6D Object Pose Estimation by Learning RGB-D Features
- Authors: Meng Tian, Liang Pan, Marcelo H Ang Jr and Gim Hee Lee
- Abstract summary: We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
- Score: 59.580366107770764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate 6D object pose estimation is fundamental to robotic manipulation and
grasping. Previous methods follow a local optimization approach which minimizes
the distance between closest point pairs to handle the rotation ambiguity of
symmetric objects. In this work, we propose a novel discrete-continuous
formulation for rotation regression to resolve this local-optimum problem. We
uniformly sample rotation anchors in SO(3), and predict a constrained deviation
from each anchor to the target, as well as uncertainty scores for selecting the
best prediction. Additionally, the object location is detected by aggregating
point-wise vectors pointing to the 3D center. Experiments on two benchmarks:
LINEMOD and YCB-Video, show that the proposed method outperforms
state-of-the-art approaches. Our code is available at
https://github.com/mentian/object-posenet.
Related papers
- RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - LocPoseNet: Robust Location Prior for Unseen Object Pose Estimation [69.70498875887611]
LocPoseNet is able to robustly learn location prior for unseen objects.
Our method outperforms existing works by a large margin on LINEMOD and GenMOP.
arXiv Detail & Related papers (2022-11-29T15:21:34Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Robust Extrinsic Symmetry Estimation in 3D Point Clouds [4.416484585765027]
Detecting the reflection symmetry plane of an object represented by a 3D point cloud is a fundamental problem in 3D computer vision and geometry processing.
We propose a statistical estimator-based approach for the plane of reflection symmetry that is robust to outliers and missing parts.
arXiv Detail & Related papers (2021-09-21T03:09:51Z) - Soft Expectation and Deep Maximization for Image Feature Detection [68.8204255655161]
We propose SEDM, an iterative semi-supervised learning process that flips the question and first looks for repeatable 3D points, then trains a detector to localize them in image space.
Our results show that this new model trained using SEDM is able to better localize the underlying 3D points in a scene.
arXiv Detail & Related papers (2021-04-21T00:35:32Z) - Joint Spatial-Temporal Optimization for Stereo 3D Object Tracking [34.40019455462043]
We propose a joint spatial-temporal optimization-based stereo 3D object tracking method.
From the network, we detect corresponding 2D bounding boxes on adjacent images and regress an initial 3D bounding box.
Dense object cues that associating to the object centroid are then predicted using a region-based network.
arXiv Detail & Related papers (2020-04-20T13:59:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.