Beyond Quantum Shannon: Circuit Construction for General n-Qubit Gates Based on Block ZXZ-Decomposition
- URL: http://arxiv.org/abs/2403.13692v2
- Date: Wed, 3 Apr 2024 14:10:27 GMT
- Title: Beyond Quantum Shannon: Circuit Construction for General n-Qubit Gates Based on Block ZXZ-Decomposition
- Authors: Anna M. Krol, Zaid Al-Ars,
- Abstract summary: This paper proposes a new optimized quantum block-ZXZ decomposition method.
It results in more optimal quantum circuits than the quantum Shannon decomposition (QSD)[27]
Because our method uses only one-qubit gates and uniformly controlled rotation-Z gates, it can easily be adapted to use other types of multi-qubit gates.
- Score: 1.0082768017695707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a new optimized quantum block-ZXZ decomposition method [7,8,10] that results in more optimal quantum circuits than the quantum Shannon decomposition (QSD)[27], which was introduced in 2006 by Shende et al. The decomposition is applied recursively to generic quantum gates, and can take advantage of existing and future small-circuit optimizations. Because our method uses only one-qubit gates and uniformly controlled rotation-Z gates, it can easily be adapted to use other types of multi-qubit gates. With the proposed decomposition, a general 3-qubit gate can be decomposed using 19 CNOT gates (rather than 20). For general $n$-qubit gates, the proposed decomposition generates circuits that have $\frac{22}{48}4^n - \frac{3}{2}2^n +\frac{5}{3}$ CNOT gates, which is less that the best known exact decomposition algorithm by $(4^{n-2} -1)/3$ CNOT gates.
Related papers
- Linear Circuit Synthesis using Weighted Steiner Trees [45.11082946405984]
CNOT circuits are a common building block of general quantum circuits.
This article presents state-of-the-art algorithms for optimizing the number of CNOT gates.
A simulated evaluation shows that the suggested is almost always beneficial and reduces the number of CNOT gates by up to 10%.
arXiv Detail & Related papers (2024-08-07T19:51:22Z) - Optimal synthesis of general multi-qutrit quantum computation [1.556591713973462]
Quantum circuits of a general quantum gate acting on multiple $d$-level quantum systems play a prominent role in quantum computation.
We propose a new Cartan decomposition of semi-simple unitary Lie group $U(n)$ (arbitrary $n$-qutrit gate)
We design an explicit quantum circuit for implementing arbitrary two-qutrit gates, and the cost of our construction is 21 generalized controlled X (GCX) and controlled increment (CINC) gates less than the earlier best result of 26 GGXs.
arXiv Detail & Related papers (2023-10-18T14:28:31Z) - Decomposition of Multi-controlled Special Unitary Single-Qubit Gates [1.412197703754359]
Multi-controlled unitary gates have been a subject of interest in quantum computing since its inception.
Current state-of-the-art approach to implementing n-qubit multi-controlled gates involves the use of a quadratic number of single-qubit and CNOT gates.
We present a new decomposition of n-qubit multi-controlled SU(2) gates that requires a circuit with a number of CNOT gates proportional to 20n.
arXiv Detail & Related papers (2023-02-13T14:08:53Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Efficient variational synthesis of quantum circuits with coherent
multi-start optimization [1.3108652488669734]
We consider the problem of synthesis into a gate set consisting of the CNOT gate and arbitrary single-qubit (1q) gates.
A key idea we propose is to use parametrized two-qubit (2q) controlled phase gates, which can interpolate between the identity gate and the CNOT gate.
This coherent optimization of the architecture together with 1q gates appears to work surprisingly well in practice.
arXiv Detail & Related papers (2022-05-02T18:00:03Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
We propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with a $CNOT$ gate count.
Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition.
arXiv Detail & Related papers (2021-09-14T15:36:22Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Efficient decomposition of unitary matrices in quantum circuit compilers [0.0]
Unitary decomposition is a widely used method to map quantum algorithms to an arbitrary set of quantum gates.
We show that our implementation generates circuits with half the number of CNOT gates and a third of the total circuit length.
In addition to that, it is also up to 10 times as fast.
arXiv Detail & Related papers (2021-01-08T12:54:27Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.